Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Specific long-term memory traces in primary auditory cortex

Key Points

  • Although the primary sensory cortices have traditionally been viewed as 'stimulus analysers', there is increasing evidence that they can undergo learning-associated plasticity. In the auditory cortex, pairing a tone with a weak shock can alter the subsequent response of the primary auditory cortex (A1) to the frequency of the tone. More recent studies have provided evidence for specificity of information storage, by combining the techniques of sensory physiology with learning and memory studies. Together, the findings indicate that A1 can store specific memory traces.

  • Changes that have been measured in A1 after learning include metabolic changes, shifts in receptive field tuning towards the conditioned stimulus frequency that occur rapidly and can last for weeks, and specific modifications of tonotopic maps to give a larger representation to the conditioned frequency. Imaging studies in humans have also shown specific, associative plasticity in A1. Together, the findings indicate that A1 can store specific memory traces.

  • Two main models have been proposed to account for such plasticity. Although they differ regarding the loci of plasticity, they agree on the importance of the nucleus basalis (NB) cholinergic system for long-term plasticity in A1. The NB is the main source of cortical acetylcholine (ACh), and cholinergic treatment of A1 causes lasting plasticity. Neurons in the NB respond to tone–shock conditioning and stimulation of the NB can substitute for a standard reinforcer in inducing plasticity in A1 and behavioural changes

  • The emerging picture of the function of A1 includes the analysis and storage of the behavioural significance of stimulus features such as frequency. Other cognitive functions for A1 are also being uncovered, including perceptual learning, rapid 'on-line' adjustments to maximize attentive captures of stimulus elements, learning of complex tasks, processing of abstract features and encoding planned behavioural acts. It will be necessary to integrate these functions and to develop a broader functional conceptualization of A1 and of the other primary sensory cortices.

Abstract

Learning and memory involve the storage of specific sensory experiences. However, until recently the idea that the primary sensory cortices could store specific memory traces had received little attention. Converging evidence obtained using techniques from sensory physiology and the neurobiology of learning and memory supports the idea that the primary auditory cortex acquires and retains specific memory traces about the behavioural significance of selected sounds. The cholinergic system of the nucleus basalis, when properly engaged, is sufficient to induce both specific memory traces and specific behavioural memory. A contemporary view of the primary auditory cortex should incorporate its mnemonic and other cognitive functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of learning on the frequency tuning of neurons in A1.
Figure 2: Development and retention of specific receptive field (RF) plasticity.
Figure 3: Specific tuning plasticity induced during appetitive conditioning revealed both in suprathreshold receptive field (RF) and threshold map measures.
Figure 4: Instrumental appetitive training with a normal reinforcer (bar press rewarded by water only in the presence of a 6-kHz tone) produces a specific increased representation that reflects the level of stimulus importance.
Figure 5: Two models of CS-specific tuning plasticity in the primary auditory cortex and fear conditioning.
Figure 6: CS-specific tuning plasticity induced by pairing a tone with stimulation of the nucleus basalis (NB), the major supplier of cortical acetylcholine.
Figure 7: Induction of specific behavioural memory by pairing a tone with stimulation of the nucleus basalis (NB).

Similar content being viewed by others

References

  1. Galambos, R., Sheatz, G. & Vernier, V. Electrophysiological correlates of a conditioned response in cats. Science 123, 376–377 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Weinberger, N. M. & Diamond, D. M. Physiological plasticity in auditory cortex: rapid induction by learning. Prog. Neurobiol. 29, 1–55 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Rauschecker, J. P. Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci. 22, 74–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Palmer, C. V., Nelson, C. T. & Lindley, G. A. The functionally and physiologically plastic adult auditory system. J. Acoust. Soc. Am. 103, 1705–1721 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Edeline, J. M. Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog. Neurobiol. 57, 165–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Irvine, D. R. & Rajan, R. Injury- and use-related plasticity in the primary sensory cortex of adult mammals: possible relationship to perceptual learning. Clin. Exp. Pharmacol. Physiol. 23, 939–947 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Moore, D. R. et al. Auditory learning as a cause and treatment of central dysfunction. Audiol. Neurootol. 6, 216–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Scheich, H., Stark, H., Zuschratter, W., Ohl, F. W. & Simonis, C. E. Some functions of primary auditory cortex in learning and memory formation. Adv. Neurol. 73, 179–193 (1997).

    CAS  PubMed  Google Scholar 

  9. Gonzalez-Lima, F. & Scheich, H. Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. II. Auditory cortex plasticity. Behav. Brain Res. 20, 281–293 (1986). This seminal study was the first to reveal highly specific, associative plasticity in the primary auditory cortex, using metabolic methods.

    Article  CAS  PubMed  Google Scholar 

  10. Carrascal, E., Ortin, A., Collia, F. & Arevalo, M. Metabolic activity changes in auditory system of the rat during associative learning. New Trends Exp. Clin. Psychiatry 6, 56–63 (1990).

    Google Scholar 

  11. Bakin, J. S. & Weinberger, N. M. Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res. 536, 271–286 (1990). This study inaugurated a hybrid sensory-learning/memory experimental design which revealed that tuning in the primary auditory cortex is not fixed in the adult but shifts to emphasize the frequency of an acquired, behaviourally important sound.

    Article  CAS  PubMed  Google Scholar 

  12. Weinberger, N. M., Diamond, D. M. & McKenna, T. M. in Neurobiology of Learning and Memory (eds Martinez, J. & Kesner, R.) 197–227 (Academic, New York, 1984).

    Google Scholar 

  13. Diamond, D. M. & Weinberger, N. M. Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behav. Neurosci. 103, 471–194 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Diamond, D. M. & Weinberger, N. M. Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Res. 372, 357–360 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Bakin, J. S., Lepan, B. & Weinberger, N. M. Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality. Brain Res. 577, 226–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Edeline, J. M. & Weinberger, N. M. Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behav. Neurosci. 107, 82–103 (1993). This paper showed that difficult discrimination training produces specific tuning plasticity but not discriminative behaviour, indicating that tuning plasticity is not tied to a specific behaviour but might constitute flexible memory storage in the service of numerous future adaptive behaviours.

    Article  CAS  PubMed  Google Scholar 

  17. Bakin, J. S., South, D. A. & Weinberger, N. M. Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behav. Neurosci. 110, 905–913 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Edeline, J. -M., Pham, P. & Weinberger, N. M. Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav. Neurosci. 107, 539–557 (1993). This paper revealed that specific cortical tuning plasticity is induced very rapidly, in only five trials.

    Article  CAS  PubMed  Google Scholar 

  19. Weinberger, N. M., Javid, R. & Lepan, B. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proc. Natl Acad. Sci. USA 90, 2394–2398 (1993). This paper showed that CS-specific plasticity in A1 exhibits long-term retention, tested to eight weeks post-training.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGaugh, J. L. Memory: a century of consolidation. Science 287, 248–251 (2000). An outstanding overview of theory and findings in brain and memory consolidation.

    Article  CAS  PubMed  Google Scholar 

  21. Galvan, V. V., Chen, J. & Weinberger, N. M. Long-term frequency tuning of local field potentials in the auditory cortex of the waking guinea pig. J. Assoc. Res. Otolaryngol. 2, 199–215 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Galvan, V. V. & Weinberger, N. M. Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol. Learn. Mem. 77, 78–108 (2002). A rare example of the tracking of learning-induced physiological plasticity over days, revealing a three-day period of increased strength of RF plasticity in the absence of additional training (that is, neural consolidation).

    Article  PubMed  Google Scholar 

  23. Kisley, M. A. & Gerstein, G. L. Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. Eur. J. Neurosci. 13, 1993–2003 (2001). This is the first report of appetitive suprathreshold tuning shifts and includes an extended pre-training baseline period, showing that RF plasticity is associative rather than reflective of spontaneous tuning changes.

    Article  CAS  PubMed  Google Scholar 

  24. Olds, J. Hypothalamic substrates of reward. Physiol. Rev. 42, 554–604 (1962).

    Article  CAS  PubMed  Google Scholar 

  25. Gao, E. & Suga, N. Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc. Natl Acad. Sci. USA 97, 8081–8086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Konorski, J. Integrative Activity of the Brain: An Interdisciplinary Approach (Univ. Chicago Press, Chicago, 1967).

    Google Scholar 

  27. Lennartz, R. C. & Weinberger, N. M. Analysis of response systems in Pavlovian conditioning reveals rapidly vs slowly acquired conditioned responses: support for two factors and implications for neurobiology. Psychobiology 20, 93–119 (1992).

    Article  Google Scholar 

  28. Pavlov, I. P. Conditioned Reflexes (Dover Publications, New York, 1927).

    Google Scholar 

  29. Ohl, F. W. & Scheich, H. Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field A1) of the alert Mongolian gerbil. Eur. J. Neurosci. 8, 1001–1017 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Ohl, F. W. & Scheich, H. Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. J. Comp. Physiol. A 181, 685–696 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Mackintosh, N. J. Conditioning and Associative Learning (Oxford Univ. Press, New York, 1983).

    Google Scholar 

  32. Mackintosh, N. J. in Memory Systems of the Brain: Animal and Human Cognitive Processes (eds Weinberger, N. M., McGaugh, J. L. & Lynch, G.) 335–350 (Guilford, New York, 1985).

    Google Scholar 

  33. Weinberger, N. M. in Springer Handbook of Auditory Research (eds Parks, E. R., Popper, A. & Fay, R.) (Springer, New York, in the press).

  34. Weinberger, N. M. et al. Retuning auditory cortex by learning: a preliminary model of receptive field plasticity. Concepts Neurosci. 1, 91–131 (1990).

    Google Scholar 

  35. Recanzone, G. H., Schreiner, C. E. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goldstone, R. L., Schyns, P. G. & Medin, D. L. Perceptual Learning (Academic, San Diego, 1997).

    Google Scholar 

  37. Brown, M., Irvine, D. R. F. & Park, V. N. Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cereb. Cortex (in the press).

  38. Bao, S., Chan, V. T. & Merzenich, M. M. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412, 79–83 (2001). This paper was the first to show that positive reinforcement increases the area of representation of a tonal frequency that signals reward.

    Article  CAS  PubMed  Google Scholar 

  39. Bao, S., Chan, V. T., Zhang, L. I. & Merzenich, M. M. Suppression of cortical representation through backward conditioning. Proc. Natl Acad. Sci. USA 100, 1405–1408 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rescorla, R. Pavlovian conditioning and its proper control procedure. Psychol. Rev. 74, 71–80 (1967).

    Article  CAS  PubMed  Google Scholar 

  41. Rutkowski, R. G., Than, K. H. & Weinberger, N. M. Evidence for area of frequency representation encoding stimulus importance in rat primary auditory cortex. Soc. Neurosci. Abstr. 28, 530 (2002).

    Google Scholar 

  42. Weinberger, N. M. The nucleus basalis and memory codes: auditory cortical plasticity and the induction of specific, associative behavioral memory. Neurobiol. Learn. Mem. 80, 268–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Weinberger, N. M. in Consolidation: Essays in Honor of James L. McGaugh (eds Gold, P. E. McGaugh, J. L., & Greenough, W. T.) 321–342 (American Psychological Association, Washington, DC, 2001). This chapter provides a detailed explication of the concept of memory codes for key features of experience.

    Book  Google Scholar 

  44. Molchan, S. E., Sunderland, T., McIntosh, A. R., Herscovitch, P. & Schreurs, B. G. A functional anatomical study of associative learning in humans. Proc. Natl Acad. Sci. USA 91, 8122–8126 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schreurs, B. G. et al. Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response. J. Neurophysiol. 77, 2153–2163 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Morris, J. S., Friston, K. J. & Dolan, R. J. Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc. R. Soc. Lond. B 265, 649–657 (1998). A comprehensive human imaging study revealing the distribution of brain loci and systems, including the auditory cortex, that are involved in fear conditioning.

    Article  CAS  Google Scholar 

  47. Weinberger, N. M. et al. in Neurocomputation and Learning: Foundations of Adaptive Networks (eds Gabriel, M. & Moore, J.) 91–138 (Bradford Books/MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  48. Suga, N. & Ma, X. Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Rev. Neurosci. 4, 783–794 (2003).

    Article  CAS  Google Scholar 

  49. Huang, C. L. & Winer, J. A. Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J. Comp. Neurol. 427, 302–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Weinberger, N. M. Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol. Learn. Mem. 70, 226–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Edeline, J. M. & Weinberger, N. M. Thalamic short-term plasticity in the auditory system: associative returning of receptive fields in the ventral medial geniculate body. Behav. Neurosci. 105, 618–639 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, E. & Suga, N. Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc. Natl Acad. Sci. USA 95, 12663–12670 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guillery, R. W. & Harting, J. K. Structure and connections of the thalamic reticular nucleus: advancing views over half a century. J. Comp. Neurol. 463, 360–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Shosaku, A., Kayama, Y., Sumitomo, I., Sugitani, M. & Iwama, K. Analysis of recurrent inhibitory circuit in rat thalamus: neurophysiology of the thalamic reticular nucleus. Prog. Neurobiol. 32, 77–102 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Edeline, J. M., Neuenschwander-El Massioui, N. & Dutrieux, G. Discriminative long-term retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex. Behav. Brain Res. 39, 145–155 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Edeline, J. M. & Weinberger, N. M. Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav. Neurosci. 106, 81–105 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Lennartz, R. C. & Weinberger, N. M. Frequency-specific receptive field plasticity in the medial geniculate body induced by Pavlovian fear conditioning is expressed in the anesthetized brain. Behav. Neurosci. 106, 484–497 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Wepsic, J. G. Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp. Neurol. 15, 299–318 (1966).

    Article  CAS  PubMed  Google Scholar 

  59. Lund, R. D. & Webster, K. E. Thalamic afferents from the spinal cord and the trigeminal nucleus. An experiment anatomic study in the rat. J. Comp. Neurol. 130, 313–328 (1967).

    Article  CAS  PubMed  Google Scholar 

  60. Gabriel, M., Miller, J. D. & Saltwick, S. E. Multiple unit activity of the rabbit medial geniculate nucleus in conditioning, extinction, and reversal. Physiol. Psychol. 4, 124–134 (1976).

    Article  Google Scholar 

  61. Gabriel, M., Saltwick, S. E. & Miller, J. D. Conditioning and reversal of short-latency multiple-unit responses in the rabbit medial geniculate nucleus. Science 189, 1108–1109 (1975).

    Article  CAS  PubMed  Google Scholar 

  62. Ryugo, D. K. & Weinberger, N. M. Differential plasticity of morphologically distinct neuron populations in the medial geniculate body of the cat during classical conditioning. Behav. Biol. 22, 275–301 (1978).

    Article  CAS  PubMed  Google Scholar 

  63. Edeline, J. M., Neuenschwander-el Massioui, N. & Dutrieux, G. Discriminative long-term retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex. Behav. Brain Res. 39, 145–155 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Edeline, J. M. Frequency-specific plasticity of single unit discharges in the rat medial geniculate body. Brain Res. 529, 109–119 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. McEchron, M. D., McCabe, P. M., Green, E. J., Llabre, M. M. & Schneiderman, N. Simultaneous single unit recording in the medial nucleus of the medial geniculate nucleus and amygdaloid central nucleus throughout habituation, acquisition, and extinction of the rabbit's classically conditioned heart rate. Brain Res. 682, 157–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. McEchron, M. D. et al. Changes of synaptic efficacy in the medial geniculate nucleus as a result of auditory classical conditioning. J. Neurosci. 16, 1273–1283 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lennartz, R. C. & Weinberger, N. M. Frequency-specific receptive field plasticity in the medial geniculate body induced by pavlovian fear conditioning is expressed in the anesthetized brain. Behav. Neurosci. 106, 484–497 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. O'Connor, K. N., Allison, T. L., Rosenfield, M. E. & Moore, J. W. Neural activity in the medial geniculate nucleus during auditory trace conditioning. Exp. Brain Res. 113, 534–556 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Gerren, R. A. & Weinberger, N. M. Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res. 265, 138–142 (1983).

    Article  CAS  PubMed  Google Scholar 

  70. Weinberger, N. M., Javid, R. & Lepan, B. Heterosynaptic long-term facilitation of sensory-evoked responses in the auditory cortex by stimulation of the magnocellular medial geniculate body in guinea pigs. Behav. Neurosci. 109, 10–17 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Cruikshank, S. J., Edeline, J. M. & Weinberger, N. M. Stimulation at a site of auditory-somatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning. Behav. Neurosci. 106, 471–483 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. LeDoux, J. E., Sakaguchi, A., Iwata, J. & Reis, D. J. Interruption of projections from the medial geniculate body to an archi-neostriatal field disrupts the classical conditioning of emotional responses to acoustic stimuli. Neuroscience 17, 615–627 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. LeDoux, J. E., Iwata, J., Pearl, D. & Reis, D. J. Disruption of auditory but not visual learning by destruction of intrinsic neurons in the rat medial geniculate body. Brain Res. 371, 395–399 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Iwata, J., LeDoux, J. E., Meeley, M. P., Arneric, S. & Reis, D. J. Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Res. 383, 195–214 (1986).

    Article  CAS  PubMed  Google Scholar 

  75. McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997). This study revealed that fear conditioning to a tone induces long-term increased release of transmitter owing to pre-synaptic mechanisms in projections from the auditory thalamus to the amygdala.

    Article  CAS  PubMed  Google Scholar 

  76. Cahill, L., McGaugh, J. L. & Weinberger, N. M. The neurobiology of learning and memory: some reminders to remember. Trends Neurosci. 24, 578–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Cahill, L., Vazdarjanova, A. & Setlow, B. The basolateral amygdala complex is involved with, but is not necessary for, rapid acquisition of Pavlovian 'fear conditioning'. Eur. J. Neurosci. 12, 3044–3050 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Vazdarjanova, A. Does the basolateral amygdala store memories for emotional events? Trends Neurosci. 23, 345–346 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Maren, S., Yap, S. A. & Goosens, K. A. The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J. Neurosci. 21, RC135 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Poremba, A. & Gabriel, M. Amygdalar efferents initiate auditory thalamic discriminative training-induced neuronal activity. J. Neurosci. 21, 270–278 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Edeline, J. M., Hars, B., Hennevin, E. & Cotillon, N. Muscimol diffusion after intracerebral microinjections: a reevaluation based on electrophysiological and autoradiographic quantifications. Neurobiol. Learn. Mem. 78, 100–124 (2002).

    Article  PubMed  Google Scholar 

  82. Maho, C. & Hennevin, E. Appetitive conditioning-induced plasticity is expressed during paradoxical sleep in the medial geniculate, but not in the lateral amygdala. Behav. Neurosci. 116, 807–823 (2002).

    Article  PubMed  Google Scholar 

  83. Teich, A. H. et al. Role of auditory cortex in the acquisition of differential heart rate conditioning. Physiol. Behav. 44, 405–412 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Romanski, L. M. & LeDoux, J. E. Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. J. Neurosci. 12, 4501–4509 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. DiCara, L. V., Braun, J. J. & Pappas, B. A. Classical conditioning and instrumental learning of cardiac and gastrointestinal responses following removal of neocortex in the rat. J. Comp. Physiol. Psychol. 73, 208–216 (1970).

    Article  CAS  PubMed  Google Scholar 

  86. Mauk, M. D. & Thompson, R. F. Retention of classically conditioned eyelid responses following acute decerebration. Brain Res. 403, 89–95 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. Norman, R. J., Villablanca, J. R., Brown, K. A., Schwafel, J. D. & Buchwald, J. S. Classical eyeblink conditioning in the bilaterally hemispherectomized cat. Exp. Neurol. 44, 363–380 (1974).

    Article  CAS  PubMed  Google Scholar 

  88. Berntson, G. G., Tuber, D. S., Ronca, A. E. & Bachman, D. S. The decerebrate human: associative learning. Exp. Neurol. 81, 77–88 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. Manunta, Y. & Edeline, J. M. Effects of noradrenaline on frequency tuning of auditory cortex neurons during wakefulness and slow-wave sleep. Eur. J. Neurosci. 11, 2134–2150 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Manunta, Y. & Edeline, J. M. Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. Eur. J. Neurosci. 9, 833–847 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Juckel, G., Hegerl, U., Molnar, M., Csepe, V. & Karmos, G. Auditory evoked potentials reflect serotonergic neuronal activity — a study in behaving cats administered drugs acting on 5-HT1A autoreceptors in the dorsal raphe nucleus. Neuropsychopharmacology 21, 710–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Stark, H. & Scheich, H. Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J. Neurochem. 68, 691–697 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Johnston, M. V., McKinney, M. & Coyle, J. T. Evidence for a cholinergic projection to neocortex from neurons in basal forebrain. Proc. Natl Acad. Sci. USA 76, 5392–5396 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mesulam, M. -M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area diagonal band nuclei, nucleus basalia (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214, 170–197 (1983).

    Article  CAS  PubMed  Google Scholar 

  95. McKenna, T. M., Ashe, J. H. & Weinberger, N. M. Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse 4, 30–43 (1989).

    Article  CAS  PubMed  Google Scholar 

  96. Ashe, J. H., McKenna, T. M. & Weinberger, N. M. Cholinergic modulation of frequency receptive fields in auditory cortex: II. Frequency-specific effects of anticholinesterases provide evidence for a modulatory action of endogenous ACh. Synapse 4, 44–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Metherate, R. & Weinberger, N. M. Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex. Synapse 6, 133–145 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Metherate, R. & Ashe, J. H. Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors. Brain Res. 559, 163–167 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Metherate, R. & Ashe, J. H. Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse 14, 132–143 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Hars, B., Maho, C., Edeline, J. -M. & Hennevin, E. Basal forebrain stimulation facilitates tone-evoked responses in the auditory cortex of awake rat. Neuroscience 56, 61–74 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Edeline, J. M., Maho, C., Hars, B. & Hennevin, E. Non-awaking basal forebrain stimulation enhances auditory cortex responsiveness during slow-wave sleep. Brain Res. 636, 333–337 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Edeline, J. M., Hars, B., Maho, C. & Hennevin, E. Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulations in the rat auditory cortex. Exp. Brain Res. 97, 373–386 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Maho, C., Hars, B., Edeline, J. -M. & Hennevin, E. Conditioned changes in the basal forebrain: relations with learning-induced cortical plasticity. Psychobiology 23, 10–25 (1995). This paper shows that fear-conditioning plasticity develops in the NB before plasticity in the auditory cortex, supporting its role as a mechanism for the induction of specific memory traces.

    Article  Google Scholar 

  104. Ji, W., Gao, E. & Suga, N. Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. J. Neurophysiol. 86, 211–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Ma, X. & Suga, N. Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex. J. Neurophysiol. 89, 90–103 (2003).

    Article  PubMed  Google Scholar 

  106. Ji, W. & Suga, N. Development of reorganization of the auditory cortex caused by fear conditioning: effect of atropine. J. Neurophysiol. 90, 1904–1909 (2003).

    Article  PubMed  Google Scholar 

  107. Thiel, C. M., Friston, K. J. & Dolan, R. J. Cholinergic modulation of experience-dependent plasticity in human auditory cortex. Neuron 35, 567–574 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Oh, J. D., Edwards, R. H. & Woolf, N. J. Choline acetyltransferase mRNA plasticity with Pavlovian conditioning. Exp. Neurol. 140, 95–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Pennartz, C. M. The ascending neuromodulatory systems in learning by reinforcement: comparing computational conjectures with experimental findings. Brain Res. Brain Res. Rev. 21, 219–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12, 669–686 (1984).

    Article  CAS  PubMed  Google Scholar 

  111. Sarter, M. & Bruno, J. P. Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res. Brain Res. Rev. 23, 28–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Olds, J. & Peretz, B. A motivational analysis of the reticular activating system. Electroencephalogr. Clin. Neurophysiol. 12, 445–454 (1960).

    Article  CAS  PubMed  Google Scholar 

  113. Wester, K. Habituation to electrical stimulation of the thalamus in unanaesthetized cats. Electroencephalogr. Clin. Neurophysiol. 30, 52–61 (1971).

    Article  CAS  PubMed  Google Scholar 

  114. Bakin, J. S. & Weinberger, N. M. Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc. Natl Acad. Sci. USA 93, 11219–11224 (1996). This paper initiated inquiries into the role of the NB in associative mechanisms in auditory cortical plasticity and memory by showing that pairing a tone with NB stimulation induced associative CS-specific RF plasticity in the auditory cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dimyan, M. A. & Weinberger, N. M. Basal forebrain stimulation induces discriminative receptive field plasticity in the auditory cortex. Behav. Neurosci. 113, 691–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Bjordahl, T. S., Dimyan, M. A. & Weinberger, N. M. Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behav. Neurosci. 112, 467–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Miasnikov, A. A., McLin, D. E. & Weinberger, N. M. Muscarinic dependence of nucleus basalis induced conditioned receptive field plasticity. Neuroreport 12, 1537–1542 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Kilgard, M. P. & Merzenich, M. M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Kilgard, M. P. et al. Sensory input directs spatial and temporal plasticity in primary auditory cortex. J. Neurophysiol. 86, 326–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. McLin, D. E., Miasnikov, A. A. & Weinberger, N. M. Induction of behavioral associative memory by stimulation of the nucleus basalis. Proc. Natl Acad. Sci. USA 99, 4002–4007 (2002). This is the only known demonstration that pairing a tone with non-motivational stimulation of the brain induces a highly specific behavioural memory, directly implicating the NB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McLin, D. E., Miasnikov, A. A. & Weinberger, N. M. CS-specific gamma, theta, and alpha EEG activity detected in stimulus generalization following induction of behavioral memory by stimulation of the nucleus basalis. Neurobiol. Learn. Mem. 79, 152–176 (2003).

    Article  PubMed  Google Scholar 

  122. Jensen, O., Idiart, M. A. & Lisman, J. E. Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: role of fast NMDA channels. Learn. Mem. 3, 243–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Beitel, R. E., Schreiner, C. E., Cheung, S. W., Wang, X. & Merzenich, M. M. Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proc. Natl Acad. Sci. USA 100, 11070–11075 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Karmarkar, U. R. & Buonomano, D. V. Temporal specificity of perceptual learning in an auditory discrimination task. Learn. Mem. 10, 141–147 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Carretta, D., Herve-Minvielle, A., Bajo, V. M., Villa, A. E. & Rouiller, E. M. c-Fos expression in the auditory pathways related to the significance of acoustic signals in rats performing a sensory-motor task. Brain Res. 841, 170–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Fritz, J., Shamma, S., Elhilali, M. & Klein, D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neurosci. 6, 1216–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Nelken, I., Fishbach, A., Las, L., Ulanovsky, N. & Farkas, D. Primary auditory cortex of cats: feature detection or something else? Biol. Cybern. 89, 397–406 (2003).

    Article  PubMed  Google Scholar 

  128. Ohl, F. W., Scheich, H. & Freeman, W. J. Change in pattern of ongoing cortical activity with auditory category learning. Nature 412, 733–736 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Blake, D. T., Strata, F., Churchland, A. K. & Merzenich, M. M. Neural correlates of instrumental learning in primary auditory cortex. Proc. Natl Acad. Sci. USA 99, 10114–10119 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Villa, A. E., Tetko, I. V., Hyland, B. & Najem, A. Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task. Proc. Natl Acad. Sci. USA 96, 1106–1111 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hernandez-Peon, R., Scherrer, H. & Jouvet, M. Modification of electric activity in cochlear nucleus during 'attention' in unanesthetized cats. Science 123, 331–332 (1956).

    Article  CAS  PubMed  Google Scholar 

  132. Furedy, J. J. Explicity unpaired and truly-random CS-controls in human classical differential autonomic conditioning. Psychophysiology 8, 497–503 (1971).

    Article  CAS  PubMed  Google Scholar 

  133. Rescorla, R. A. Behavioral studies of Pavlovian conditioning. Annu. Rev. Neurosci. 11, 329–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  134. Weinberger, N. M. Learning-induced receptive field plasticity in the primary auditory cortex. Sem. Neurosci. 9, 59–67 (1997).

    Article  Google Scholar 

  135. Weinberger, N. M. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 1071–1089 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by research grants from the National Institute of Deafness and Other Communication Disorders and from the National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Norman Weinberger's homepage

The Music and Science Information Computer Archive

Center for the Neurobiology of Learning and Memory

Glossary

RECEPTIVE FIELD

That limited domain of the sensory environment to which a given sensory neuron is responsive, for example, a limited frequency band in audition or a limited area of space in vision.

TONOTOPIC MAP

An area in the auditory system in which neighbouring cells are most sensitive to acoustic frequencies that are adjacent to their own preferred threshold frequencies.

BRADYCARDIA

Slowing of heart rate. It is often a conditioned response to a stimulus that has been paired with a negative reinforcer.

SENSITIZATION

An increased response to a neutral stimulus caused by an increase in general arousal or behavioural excitability, often produced by presentation of a noxious stimulus.

BEST FREQUENCY

Within the receptive field for frequency of an auditory system neuron, the frequency that elicits the greatest cellular response.

CONSOLIDATION

A growth in the strength of memory across time after an experience, often inferred from increasing resistance to memory disruption with increasing time or directly measured as increasing strength of neural response over time.

NUCLEUS BASALIS

A group of neurons deep within the cerebral hemispheres that release acetylcholine (ACh) widely to the cerebral cortex.

CHARACTERISTIC FREQUENCY

The acoustic frequency to which an auditory neuron is tuned at its threshold of response.

FREQUENCY TUNING SHIFT

A change in the frequency tuning of an auditory neuron from its original best frequency to another frequency, often the result of increased behavioural importance of another frequency.

REINFORCER

A stimulus that is paired with and immediately follows presentation of a biologically neutral stimulus, such as a tone. Reinforcers are usually biologically important, such as food or shock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinberger, N. Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5, 279–290 (2004). https://doi.org/10.1038/nrn1366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing