Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Invasive recordings from the human brain: clinical insights and beyond

Key Points

  • Despite the success of functional imaging in advancing our understanding of the human brain, our knowledge about physiological processes at the cellular level is largely inferential and based on comparative data from animal models. Fortunately, therapeutic approaches make it possible to carry out invasive recordings in the human brain; for example, in patients with movement disorders such as Parkinson's disease, or in patients with untractable epilepsies where pathological neural activity needs to be localized before the epileptic foci can be surgically removed.

  • Neurophysiological recordings from human basal ganglia and the motor thalamus produce important insights into the pathophysiological mechanisms of movement disorders. The data are important because none of the available animal models of Parkinson's disease faithfully reproduces all of the symptoms of the human disorder.

  • Classical models, which account for the key symptoms of Parkinson's disease by assuming enhanced firing rates at the basal ganglia output stages, are now considered limited in their explanatory power. Invasive data support a new pathophysiological model in which dynamic interactions between the basal ganglia, thalamus and cortex in different frequency bands modulate motor functions in a task- and state-dependent way.

  • In addition to their clinical relevance, recordings in the temporal lobe of patients with epilepsy allow us to address basic questions regarding neural coding and representation. Single-cell recordings are particularly interesting for studying the cellular mechanisms of language-related capacities such as verbal memory, naming and reading. Semichronic recordings of local field potentials with subdural electrodes provide valuable information on the spatiotemporal dynamics of large neural assemblies that underlie language processing and other cognitive functions.

  • Single-cell recordings from the medial temporal lobes of patients with epilepsy lend support to the role of this structure in declarative memory. Activity of neurons in this region correlates with memory performance, and cells with specific responses to visual stimuli during encoding can be reactivated during visual imagery. Moreover, activity of neurons reflects the conscious perception of stimuli rather than the physical stimulus affecting the sensory surface.

  • Future applications of invasive techniques will probably include new types of medical intervention, such as the development of demand-controlled pacemakers for deep brain stimulation, devices for real-time seizure prediction, or chronically implantable brain-computer interfaces. In addition to their biomedical relevance, invasive recordings seem indispensable because they provide the only access to the human brain at cellular resolution. By allowing researchers to address the mechanisms of specifically human cognitive functions, invasive recordings might substantially contribute to shaping our understanding of the human mind.

Abstract

Although non-invasive methods such as functional magnetic resonance imaging, electroencephalograms and magnetoencephalograms provide most of the current data about the human brain, their resolution is insufficient to show physiological processes at the cellular level. Clinical approaches sometimes allow invasive recordings to be taken from the human brain, mainly in patients with epilepsy or with movement disorders, and such recordings can sample neural activity at spatial scales ranging from single cells to distributed cell assemblies. In addition to their clinical relevance, these recordings can provide unique insights into brain functions such as movement control, perception, memory, language and even consciousness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multisite recordings help to elucidate the pathophysiology of basal ganglia disorders.
Figure 2: Single-unit recordings in the lateral temporal lobe probe language-related capacities.
Figure 3: Invasive recordings reveal assembly dynamics in the human brain.
Figure 4: Recordings in the medial temporal lobe (MTL) yield insights into perceptual and memory functions.

Similar content being viewed by others

References

  1. Bergman, H., Wichmann, T. & DeLong, M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438 (1990). A seminal study that indicated that the STN should be a key target in stereotactic neurosurgery for PD.

    Article  CAS  PubMed  Google Scholar 

  2. Pollak, P. et al. Effects of the stimulation of the subthalamic nucleus in Parkinson disease. Rev. Neurol. (Paris) 149, 175–176 (1993).

    CAS  Google Scholar 

  3. Eltahawy, H. A., Saint-Cyr, J., Giladi, N., Lang, A. E. & Lozano, A. M. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery 54, 613–619 (2004).

    Article  PubMed  Google Scholar 

  4. Papavassiliou, E. et al. Thalamic deep brain stimulation for essential tremor: relation of lead location to outcome. Neurosurgery 54, 1120–1129 (2004).

    Article  PubMed  Google Scholar 

  5. Guridi, J. et al. Targeting the basal ganglia for deep brain stimulation in Parkinson's disease. Neurology 55 (Suppl. 6), S21–S28 (2000).

    CAS  PubMed  Google Scholar 

  6. Benazzouz, A. et al. Intraoperative microrecordings of the subthalamic nucleus in Parkinson's disease. Mov. Disord. 17 (Suppl. 3), S145–S149 (2002).

    Article  PubMed  Google Scholar 

  7. Hutchison, W. D. et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann. Neurol. 44, 622–628 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez-Oroz, M. C. et al. The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics. Brain 124, 1777–1790 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Abosch, A., Hutchison, W. D., Saint-Cyr, J. A., Dostrovsky, J. O. & Lozano, A. M. Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. J. Neurosurg. 97, 1167–1172 (2002).

    Article  PubMed  Google Scholar 

  10. Romanelli, P. et al. Microelectrode recording revealing a somatotopic body map in the subthalamic nucleus in humans with Parkinson disease. J. Neurosurg. 100, 611–618 (2004).

    Article  PubMed  Google Scholar 

  11. Lenz, F. A. et al. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic tremor cells with the 3–6 Hz component of Parkinsonian tremor. J. Neurosci. 8, 754–764 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MacMillan, M. L., Dostrovsky, J. O., Lozano, A. M. & Hutchison, W. D. Involvement of human thalamic neurons in internally and externally generated movements. J. Neurophysiol. 91, 1085–1090 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Lenz, F. A. et al. Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117, 531–543 (1994).

    Article  PubMed  Google Scholar 

  14. Bergman, H. & Deuschl, G. Pathophysiology of Parkinson's disease: from clinical neurology to basic neuroscience and back. Mov. Disord. 17 (Suppl. 3), S28–S40 (2002).

    Article  PubMed  Google Scholar 

  15. Hurtado, J. M., Gray, C. M., Tamas, L. B. & Sigvardt, K. A. Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc. Natl Acad. Sci. USA 96, 1674–1679 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levy, R., Hutchison, W. D., Lozano, A. M. & Dostrovsky, J. O. High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J. Neurosci. 20, 7766–7775 (2000). The first description of synchronized activity in the human STN at the single-cell level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magnin, M., Morel, A. & Jeanmonod, D. Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in Parkinsonian patients. Neuroscience 96, 549–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Jeanmonod, D., Magnin, M. & Morel, A. Low-threshold calcium spike bursts in the human thalamus. Common pathophysiology for sensory, motor and limbic positive symptoms. Brain 119, 363–375 (1996).

    Article  PubMed  Google Scholar 

  19. Paré, D., Curro'Dossi, R. & Steriade, M. Neuronal basis of the Parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience 35, 217–226 (1990).

    Article  PubMed  Google Scholar 

  20. Obeso, J. A. et al. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci. 23 (Suppl.), S8–S19 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Wichmann, T. & DeLong, M. Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6, 751–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Bergman, H. et al. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 21, 32–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Bar-Gad, I. & Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11, 689–695 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Nini, A., Feingold, A., Slovin, H. & Bergman, H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74, 1800–1805 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Raz, A. et al. Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J. Neurosci. 21, RC 128, 1–5 (2001).

    Article  CAS  Google Scholar 

  28. Goldberg, J. A. et al. Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine primate model of Parkinson's disease. J. Neurosci. 22, 4639–4653 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levy, R., Hutchison, W. D., Lozano, A. M. & Dostrovsky, J. O. Synchronized neuronal discharge in the basal ganglia of Parkinsonian patients is limited to oscillatory activity. J. Neurosci. 22, 2855–2861 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levy, R. et al. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain 125, 1196–1209 (2002).

    Article  PubMed  Google Scholar 

  31. Brown, P. et al. Dopamine dependence of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J. Neurosci. 21, 1033–1038 (2001). The discovery of dopamine-dependent gamma-band activity in the human basal ganglia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marsden, J. F., Limousin-Dowsey, P., Ashby, P., Pollak, P. & Brown, P. Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease. Brain 124, 378–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Cassidy, M. et al. Movement-related changes in synchronization in the human basal ganglia. Brain 125, 1235–1246 (2002).

    Article  PubMed  Google Scholar 

  34. Kuhn, A. A. et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127, 735–746 (2004).

    Article  PubMed  Google Scholar 

  35. Brown, P. & Marsden, C. D. What do the basal ganglia do? Lancet 351, 1801–1804 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Brown, P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. Mov. Disord. 18, 357–363 (2003).

    Article  PubMed  Google Scholar 

  37. Limousin, P. et al. Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345, 91–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Vitek, J. Pathophysiology of dystonia: a neuronal model. Mov. Disord. 17 (Suppl. 3), S49–S62 (2002).

    Article  PubMed  Google Scholar 

  40. Deuschl, G. & Bergman, H. Pathophysiology of nonparkinsonian tremors. Mov. Disord. 17 (Suppl. 3), S41–S48 (2002).

    Article  PubMed  Google Scholar 

  41. Riehle, A., Gruen, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1953 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Roelfsema, P. R., Engel, A. K., König, P. & Singer, W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G. & Gaal, G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol. 79, 159–173 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neurosci. 2, 704–716 (2001).

    Article  CAS  Google Scholar 

  46. Herrmann, C. S., Munk, M. H. J. & Engel, A. K. Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn. Sci. 8, 347–355 (2004).

    Article  PubMed  Google Scholar 

  47. Ward, A. A. Jr & Thomas, L. B. The electrical activity of single units in the cerebral cortex of man. EEG Clin. Neurophysiol. 7, 135–136 (1955). The first report of successful single-unit recording in the human neocortex.

    Article  CAS  Google Scholar 

  48. Ward, A. A. Jr. The epileptic neurones. Epilepsia 2, 70–80 (1961).

    Article  PubMed  Google Scholar 

  49. Rayport, M. & Waller, H. J. Technique and results of microelectrode recording in human epileptogenic foci. EEG Clin. Neurophysiol. 25 (Suppl.), 143–151 (1967).

    Google Scholar 

  50. Ishijima, B. et al. Neuronal activities in human epileptic foci and surrounding areas. EEG Clin. Neurophysiol. 39, 643–650 (1975).

    Article  CAS  Google Scholar 

  51. Wyler, A. R., Ojemann, G. A. & Ward, A. A. Neurons in human epileptic cortex: correlation between unit and EEG activity. Ann. Neurol. 11, 301–308 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Ojemann, G. A., Ojemann, S. G. & Fried, I. Lessons from the human brain: neuronal activity related to cognition. Neuroscientist 4, 285–300 (1998).

    Article  Google Scholar 

  53. McCormick, D. A. & Contreras, D. On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 63, 815–846 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Avanzini, G. & Franceschetti, S. Cellular biology of epileptogenesis. Lancet Neurol. 2, 33–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Ojemann, G. A. in. Operative Neurosurgical Techniques 3rd edn (eds Schmidek, H. H. & Sweet, W. H.) 1317–1322 (W. B. Saunders Co., Philadelphia, 1995).

    Google Scholar 

  56. Ojemann, G. A., Schoenfield-McNeill, J. & Corina, D. Anatomic subdivisions in human temporal cortical neuronal activity related to recent verbal memory. Nature Neurosci. 5, 64–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ojemann, G., Ojemann, J., Lettich, E. & Berger, M. Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 71, 316–326 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Ojemann, G. A., Creutzfeldt, O. D., Lettich, E. & Haglund, M. M. Neuronal activity in human lateral temporal cortex related to short-term verbal memory, naming and reading. Brain 111, 1383–1403 (1988). The first controlled study of language-related activity in the human temporal lobe using microelectrode recordings.

    Article  PubMed  Google Scholar 

  59. Ojemann, G. & Schoenfield-McNeill, J. Activity of neurons in human temporal cortex during identification and memory for names and words. J. Neurosci. 19, 5674–5682 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haglund, M. M., Ojemann, G. A., Schwartz, T. W. & Lettich, E. Neuronal activity in human lateral temporal cortex during serial retrieval from short-term verbal memory. J. Neurosci. 14, 1507–1515 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwartz, T., Ojemann, G., Haglund, M. & Lettich, E. Cerebral lateralization of neuronal activity during naming, reading and line-matching. Cogn. Brain Res. 4, 263–273 (1996).

    Article  CAS  Google Scholar 

  62. Schwartz, T. H., Haglund, M. M., Lettich, E. & Ojemann, G. A. Asymmetry of neuronal activity during extracellular microelectrode recording from left and right human temporal lobe neocortex during rhyming and line matching. J. Cogn. Neurosci. 12, 803–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Bechtereva, N. P. Abdullaev, Y. G. & Medvedev, S. V. Neuronal activity in frontal speech area 44 of the human cerebral cortex during word recognition. Neurosci. Lett. 124, 61–64 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Bechtereva, N. P. & Abdullaev, Y. G. Depth electrodes in clinical neurophysiology: neuronal activity and human cognitive function. Int. J. Psychophysiol. 37, 11–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Creutzfeldt, O., Ojemann, G. & Lettich, E. Neuronal activity in the human lateral temporal lobe. I. Responses to speech. Exp. Brain Res. 77, 451–475 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Creutzfeldt, O., Ojemann, G. & Lettich, E. Neuronal activity in the human lateral temporal lobe. II. Responses to the subjects own voice. Exp. Brain Res. 77, 476–489 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Lucas, T. H., Schoenfield-McNeill, J., Weber, P. B. & Ojemann, G. A. A direct measure of human lateral temporal lobe neurons responsive to face matching. Cogn. Brain Res. 18, 15–25 (2003).

    Article  Google Scholar 

  68. Perrine, K., Devinsky, O., Uysal, S., Luciano, D. J. & Dogali, M. Left temporal neocortex mediation of verbal memory: evidence from mapping with cortical stimulation. Neurology 44, 1845–1850 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Kirchhoff, B. A., Wagner, A. D., Maril, A. & Stern, C. E. Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J. Neurosci. 20, 6173–6180 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ojemann, G. A., Schoenfield-McNeill, J. & Corina, D. Different neurons in different regions of human temporal lobe distinguish correct from incorrect identification or memory. Neuropsychologia 42, 1383–1393 (2004).

    Article  PubMed  Google Scholar 

  71. Weber, P. & Ojemann, G. A. Neuronal recordings in human lateral temporal lobe during verbal paired associates learning. Neuroreport 6, 685–689 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Ojemann, G. A. & Schoenfield-McNeill, J. Neurons in human temporal cortex active with verbal associative learning. Brain Lang. 64, 317–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Wyler, A. R., Ojemann, G. A., Lettich, E. & Ward, A. A. Jr. Subdural strip electrodes for localizing epileptogenic foci. J. Neurosurg. 60, 1195–1200 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Pfurtscheller, G., Neuper, C. & Kalcher, J. 40-Hz oscillations during motor behavior in man. Neurosci. Lett. 164, 179–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Salenius, S., Salmelin, R., Neuper, C., Pfurtscheller, G. & Hari, R. Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neurosci. Lett. 213, 75–78 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Toro, C. et al. Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. EEG Clin. Neurophysiol. 93, 380–389 (1994).

    Article  CAS  Google Scholar 

  77. Crone, N. E. et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 121, 2271–2299 (1998).

    Article  PubMed  Google Scholar 

  78. Crone, N. E., Miglioretti, D. L., Gordon, B. & Lesser, R. P. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121, 2301–2315 (1998). The first report of event-related gamma-band synchronization in electrocorticographic recordings.

    Article  PubMed  Google Scholar 

  79. Aoki, F., Fetz, E. E., Shupe, L., Lettich, E. & Ojemann, G. A. Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin. Neurophysiol. 110, 524–537 (1999). The demonstration that task-related changes occur in the coherence of electrocorticographic gamma-band activity.

    Article  CAS  PubMed  Google Scholar 

  80. Aoki, F., Fetz, E. E., Shupe, L., Lettich, E. & Ojemann, G. A. Changes in power and coherence of brain activity in human sensorimotor cortex during performance of visuomotor tasks. BioSystems 63, 89–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Pfurtscheller, G., Graimann, B., Huggins, J. E., Levine, S. P. & Schuh, L. A. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin. Neurophysiol. 114, 1226–1236 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Crone, N. E., Boatman, D., Gordon, B. & Hao, L. Induced electrocorticographic gamma activity during auditory perception. Clin. Neurophys. 112, 565–582 (2001).

    Article  CAS  Google Scholar 

  83. Crone, N. E. et al. Electrocorticographic gamma activity during word production in spoken and sign language. Neurology 57, 2045–2053 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Ulbert, I., Karmos, G., Heit, G. & Halgren, E. Early discrimination of coherent versus incoherent motion by multiunit and synaptic activity in human putative MT+. Hum. Brain Mapp. 13, 226–238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Heit, G., Smith, M. E. & Halgren, E. Neural encoding of individual words and faces by the human hippocampus and amygdala. Nature 333, 773–775 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Heit, G., Smith, M. E. & Halgren, E. Neuronal activity in the human medial temporal lobe during recognition memory. Brain 113, 1093–1112 (1990).

    Article  PubMed  Google Scholar 

  87. Fried, I. et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. Technical note. J. Neurosurg. 91, 697–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Fried, I. et al. Increased dopamine release in the human amygdala during performance of cognitive tasks. Nature Neurosci. 4, 201–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Staba, R. J., Wilson, C. L., Bragin, A., Fried, I. & Engel, J. Jr. Sleep states differentiate single neuron activity recorded from human epileptic hippocampus, entorhinal cortex, and subiculum. J. Neurosci. 22, 5694–5704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elger, C. E. Epilepsy: disease and model to study human brain function. Brain Pathol. 12, 193–198 (2002).

    Article  PubMed  Google Scholar 

  91. Crick, F., Koch, C., Kreiman, G. & Fried, I. Consciousness and neurosurgery. Neurosurgery 55, 273–282 (2004).

    Article  PubMed  Google Scholar 

  92. Halgren, E., Babb, T. L. & Crandall, P. H. Activity of human hippocampal formation and amygdala neurons during memory testing. EEG Clin. Neurophysiol. 45, 585–601 (1978).

    Article  CAS  Google Scholar 

  93. Squire, L. R. Mechanisms of memory. Science 232, 1612–1619 (1986).

    Article  CAS  PubMed  Google Scholar 

  94. Fried, I., MacDonald, K. A. & Wilson, C. L. Single neuron activity in the human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Cameron, K. A., Yashar, S., Wilson, C. L. & Fried, I. Human hippocampal neurons predict how well word pairs will be remembered. Neuron 30, 289–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Fried, I., Cameron, K. A., Yashar, S., Fong, R. & Morrow, J. W. Inhibitory and excitatory responses of single neurons in the human medial temporal lobe during recognition of faces and objects. Cereb. Cortex 12, 575–584 (2002).

    Article  PubMed  Google Scholar 

  97. O'Keefe, J. Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 9, 352–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–187 (2003). The discovery of place cells in the human MTL.

    Article  CAS  PubMed  Google Scholar 

  99. Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci. 3, 946–953 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000). The first demonstration of imagery neurons in the human MTL.

    Article  CAS  PubMed  Google Scholar 

  101. Kreiman, G., Fried, I. & Koch, C. Single-neuron correlates of subjective vision in the human medial temporal lobe. Proc. Natl Acad. Sci. USA 99, 8378–8383 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Engel, A. K. & Singer, W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25 (2001).

    Article  PubMed  Google Scholar 

  103. Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nature Rev. Neurosci. 3, 261–270 (2002).

    Article  CAS  Google Scholar 

  104. Leopold, D. A. & Logothetis, N. K. Multistable phenomena: changing views in perception. Trends Cogn. Sci. 3, 254–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Donchin, E., Spencer, K. M. & Dien, J. in Brain and Behaviour: Past, Present, and Future (eds van Boxtel, G. J. M. & Bocker, K. B. E.) 67–91 (Tilburg Univ. Press, Tilburg, 1997).

    Google Scholar 

  106. Kranczioch, C., Debener, S. & Engel, A. K. Event-related potential correlates of the attentional blink phenomenon. Cogn. Brain Res. 17, 177–187 (2003).

    Article  Google Scholar 

  107. Halgren, E. et al. Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science 210, 803–805 (1980).

    Article  CAS  PubMed  Google Scholar 

  108. Halgren, E. et al. Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. EEG Clin. Neurophysiol. 94, 229–250 (1995).

    Article  CAS  Google Scholar 

  109. Chatrian, G. E., Bickford, R. G. & Uihlein, A. Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. EEG Clin. Neurophysiol. 12, 167–176 (1960).

    Article  CAS  Google Scholar 

  110. Hirai, N., Uchida, S., Maehara, T., Okubo, Y. & Shimizu, H. Enhanced gamma (30–150Hz) frequency in the human medial temporal lobe. Neuroscience 90, 1149–1155 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Uchida, S., Maehara, T., Hirai, N., Okubo, Y. & Shimizu, H. Cortical oscillations in human medial temporal lobe during wakefulness and all-night sleep. Brain Res. 891, 7–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Staba, R. J., Wilson, C. L., Bragin, A., Fried, I. & Engel, J. Jr. Quantitative analysis of high-frequency oscillations (80–500Hz) recorded in human epileptic hippocampus and entorhinal cortex. J. Neurophysiol. 88, 1743–1752 (2002).

    Article  PubMed  Google Scholar 

  113. Bragin, A. et al. Interictal high-frequency oscillations (80–500Hz) in the human epileptic brain: entorhinal cortex. Ann. Neurol. 52, 407–415 (2002).

    Article  PubMed  Google Scholar 

  114. Chrobak, J. J., Lörincz, A. & Buzsáki, G. Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus 10, 457–465 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Fell, J. et al. Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling. Nature Neurosci. 4, 1259–1264 (2001). An important study that showed memory-related changes in gamma-band coherence between the hippocampus and entorhinal cortex.

    Article  CAS  PubMed  Google Scholar 

  116. Fell, J. et al. Rhinal-hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization? Eur. J. Neurosci. 17, 1082–1088 (2003).

    Article  PubMed  Google Scholar 

  117. Fell, J. et al. Rhinal-hippocampal EEG coherence is reduced during human sleep. Eur. J. Neurosci. 18, 1711–1716 (2003).

    Article  PubMed  Google Scholar 

  118. Oya, H., Kawasaki, H., Howard, M. A. III & Adolphs, R. Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. J. Neurosci. 22, 9502–9512 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Singer, W. et al. Neuronal assemblies: necessity, signature and detectability. Trends Cogn. Sci. 1, 252–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Normann, R. A., Maynard, E. M., Rousche, P. J. & Warren, D. J. A neural interface for a cortical vision prosthesis. Vision Res. 39, 2577–2587 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Ulbert, I., Halgren, E., Heit, G. & Karmos, G. Multiple microelectrode recording system for human intracortical applications. J. Neurosci. Meth. 106, 69–79 (2001).

    Article  CAS  Google Scholar 

  122. McIntyre, C. C., Savasta, M., Walter, B. L. & Vitek, J. L. How does deep brain stimulation work? Present understanding and future questions. J. Clin. Neurophysiol. 21, 40–50 (2004).

    Article  PubMed  Google Scholar 

  123. Theodore, W. H. & Fisher, R. S. Brain stimulation for epilepsy. Lancet Neurol. 3, 111–118 (2004).

    Article  PubMed  Google Scholar 

  124. Tass, P. A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88 (2003).

    Article  PubMed  Google Scholar 

  125. Litt, B. & Echauz, J. Prediction of epileptic seizures. Lancet Neurol. 1, 22–30 (2002).

    Article  PubMed  Google Scholar 

  126. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G. & Vaughan, T. M. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002).

    Article  PubMed  Google Scholar 

  127. Mussa-Ivaldi, F. A. & Miller, L. E. Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 26, 329–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Schwartz, A. B. Cortical neural prosthetics. Annu. Rev. Neurosci. 27, 487–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Pfurtscheller, G., Müller, G. R., Pfurtscheller, J., Gerner, H. J. & Rupp, R. 'Thought' — control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 351, 33–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Yoo, S. -S. et al. Brain-computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15, 1591–1595 (2004).

    Article  PubMed  Google Scholar 

  131. Weiskopf, N. et al. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51, 966–970 (2004).

    Article  PubMed  Google Scholar 

  132. Chapin, J. K., Moxon, K. A., Markowitz, R. S. & Nicolelis, M. A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neurosci. 2, 664–667 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R. & Donoghue, J. P. Instant neural control of a movement signal. Nature 416, 141–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Taylor, D. M., Tillery, S. I. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Kennedy, P. R. & Bakay, R. A. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport 9, 1707–1711 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Patil, P. G., Carmena, J. M., Nicolelis, M. A. & Turner, D. A. Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface. Neurosurgery 55, 27–38 (2004).

    Article  PubMed  Google Scholar 

  137. Levine, S. P. et al. Identification of electrocorticogram patterns as the basis for a direct brain interface. J. Clin. Neurophysiol. 16, 439–447 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Huggins, J. E. et al. Detection of event-related potentials for development of a direct brain interface. J. Clin. Neurophysiol. 16, 448–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. R. & Moran, D. W. A brain-computer interface using electrocorticographic signals in humans. J. Neural Engin. 1, 63–71 (2004). A successful attempt to use event-related synchronization to control a BCI.

    Article  Google Scholar 

  140. Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Psychiatr. Nervenkr. 87, 527–570 (1929).

    Article  Google Scholar 

  141. Foerster, O. & Altenburger, H. Elektrobiologische Vorgänge an der menschlichen Hirnrinde. Dtsch. Zschr. Nervenheilk. 135, 277–288 (1934).

    Article  Google Scholar 

  142. Jasper, H. H. & Penfield, W. Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Arch. Psychiatr. Nervenkr. 183, 162–174 (1949).

    Article  Google Scholar 

  143. Crandall, P. H., Walter, R. D. & Rand, R. W. Clinical applications of studies on stereotaxically implanted electrodes in temporal lobe epilepsy. J. Neurosurg. 20, 827–840 (1963).

    Article  CAS  PubMed  Google Scholar 

  144. Verzeano, M., Crandall, P. H. & Dymond, A. Neuronal activity of the amygdala in patients with psychomotor epilepsy. Neuropsychologia 9, 331–344 (1971). The first recording of single-unit activity from the human MTL.

    Article  CAS  PubMed  Google Scholar 

  145. Meyers, R. Surgical interruption of the pallidofugal fibres, its effects on the syndrome of paralysis agitans and technical considerations in its application. NY State J. Med. 42, 317–325 (1942).

    Google Scholar 

  146. Jung, R. & Kornmüller, A. E. Eine Methodik der Ableitung lokalisierter Potentialschwankungen aus subcorticalen Hirngebieten. Arch. Psychiatr. 109, 1–30 (1938).

    Article  Google Scholar 

  147. Spiegel, E. A., Wycis, H. T., Marks, M. & Lee, A. J. Stereotaxic apparatus for operations on the human brain. Science 106, 349–350 (1947).

    Article  CAS  PubMed  Google Scholar 

  148. Williams, D. & Parsons-Smith, G. The spontaneous electrical activity of the human thalamus. Brain 72, 450–482 (1949).

    Article  CAS  PubMed  Google Scholar 

  149. Albe-Fessard, D. et al. Identification et délimitation précise de certaines structures sous-corticales de l'homme par l'électrophysiologie. Son intérét dans la chirurgie stéréotaxique des dyskinêsies. CR Acad. Sci. (Paris) 243, 2412–2414 (1961).

    Google Scholar 

  150. Bertrand, G. & Jasper, H. Microelectrode recording of unit activity in the human thalamus. Confin. Neurol. 26, 205–208 (1965).

    Article  CAS  PubMed  Google Scholar 

  151. Umbach, W. & Ehrhardt, K. J. Micro-electrode recording in the basal ganglia during stereotaxic operations. Confin. Neurol. 26, 315–317 (1965).

    Article  CAS  PubMed  Google Scholar 

  152. Struppler, A., Lücking, C. H. & Erbel, F. Neurophysiological findings during stereotactic operation in thalamus and subthalamus. Confin. Neurol. 34, 70–73 (1972).

    Article  CAS  PubMed  Google Scholar 

  153. Benabid, A. L., Pollak, P., Louveau, A., Henry, S. & de Rougemont, J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson's disease. Appl. Neurophysiol. 50, 344–346 (1987). The first study to apply the technique of DBS in humans.

    CAS  PubMed  Google Scholar 

  154. Menne, K. M. L. et al. Online 32-channel signal processing and integrated database improve navigation during cranial stereotactic surgeries. Int. Congr. Ser. 1268, 443–448 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

A.K.E. acknowledges support by grants from the German Federal Ministry of Education and Research (BMBF), the European Commission and the Volkswagen Foundation. C.K.E.M. is supported by the German National Academic Foundation. G.A.O.'s current research is supported by the NIH. The authors thank Hagai Bergman, Peter Brown, Nathan Crone and Tobias Donner for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas K. Engel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Parkinson's disease

FURTHER INFORMATION

Engel's homepage

Fried's homepage

Ojemann's homepage

Glossary

LOCAL FIELD POTENTIAL

Extracellular voltage fluctuations reflecting the sum of events in the dendrites of a local neuronal population.

CELL ASSEMBLY

A spatially distributed set of cells that are activated in a coherent fashion and that are part of the same representation.

IDIOPATHIC DYSTONIA

A movement disorder that leads to involuntary sustained muscle contractions, causing distorted posturing of the foot, leg or arm.

ESSENTIAL TREMOR

The most common neurological movement disorder. Symptoms include involuntary rhythmic movements of the limbs, head or neck.

STEREOTACTIC NEUROSURGERY

Microsurgical intervention in deep brain structures for lesion, biopsy or implantation that is based on careful planning using a three-dimensional coordinate system established with the help of neuroimaging.

DEEP BRAIN STIMULATION

A continuous application of short current pulses that is supposed to lead to functional blockade of basal ganglia nuclei.

MPTP PRIMATE MODEL

For the study of the pathophysiology of Parkinson's disease, monkeys are exposed to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causing degeneration of dopaminergic neurons in the substantia nigra.

ELECTROMYOGRAM

Extracellular recording of muscle fibre activity.

COHERENCE

A normalized measure of neural interaction that shows high values when two signals share similar frequencies and adopt a constant phase relationship.

FOCAL EPILEPSY

A type of seizure with a localized site of onset.

ELECTROCORTICOGRAM

Direct recording of voltage fluctuations from the cortical surface.

CROSS-CORRELOGRAM

A histogram that describes the time relation between two signals, in which a centre peak indicates synchrony and side peaks reflect oscillations.

WADA TEST

Injection of an anaesthetic (such as amobarbital) into the left or right internal carotid artery, which allows researchers to test the cognitive abilities of one cerebral hemisphere in isolation.

PRIMING

The facilitation of recognition, reproduction or biases in selection of stimuli that have recently been perceived.

MOVEMENT-RELATED DESYNCHRONIZATION

A decrease or increase in power in a certain frequency band shortly before or during the execution of a movement.

PHONEMES

Individual units of speech sound that combine to make words.

INTERICTAL ACTIVITY

Neural activity in an epileptogenic region in the time between two seizures.

P3 COMPONENT

A positive electroencephalogram wave that appears 300–500 ms after a salient or novel stimulus that has attracted the subject's attention.

EVENT-RELATED POTENTIAL

Phase-locked electroencephalogram activity, obtained by averaging data segments recorded after presentation of a stimulus.

OBSESSIVE-COMPULSIVE DISORDER

A neuropsychiatric disorder that leads to an abnormal degree of disturbing and intrusive thoughts and impulses, as well as compulsive behaviours.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, A., Moll, C., Fried, I. et al. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6, 35–47 (2005). https://doi.org/10.1038/nrn1585

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing