Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Compartments and their boundaries in vertebrate brain development

Key Points

  • The embryonic vertebrate hindbrain is subdivided into a series of cell lineage-restricted (that is, cell-tight) compartments known as rhombomeres. The nested expression of Hox genes and the reiterative organization of neurogenesis, proliferation and axonal projections in rhombomeres indicates that the hindbrain is a segmented, metameric structure, similar to the insect body plan. Rhombomere identity is regulated, at least in part, by specific Hox genes or combinations of Hox genes.

  • Various models for a segmental organization of the vertebrate forebrain have been proposed. A prominent recent model suggested a subdivision of the forebrain into six prosomeres. However, only four lineage restriction boundaries have been detected in this area: the transverse boundary between the diencephalon and the midbrain (the DMB), two transverse boundaries that encompass a wedge-shaped area in the presumptive diencephalon that gives rise to the zona limitans intrathalamica (ZLI), and a longitudinal boundary in the telencephalon between the pallium and the subpallium (the PSB).

  • The midbrain–hindbrain boundary (MHB) is a model for a local signalling centre in the emerging vertebrate brain. It regulates the development of its flanking territories through the secretion of fibroblast growth factors (FGFs). Recently, signalling functions have also been revealed for the anterior border of the neural plate (which secretes anti-WNTs and FGFs), for the ZLI (sonic hedgehog), for rhombomere boundaries (WNTs) and for rhombomere 4 (FGFs).

  • The differential response of flanking regions to signals that diffuse from local signalling centres is mediated by a prepattern of transcription factors that are expressed differentially around signalling centres, notably OTX2 (orthodenticle homologue 2) and GBX2 (gastrulation brain homeobox 2) on either side of the MHB, and members of the Iroquois family at the MHB and the ZLI.

  • The localization of boundaries is regulated by global signalling gradients that govern the patterning of the gastrula stage embryo. Both the MHB and the ZLI might be positioned directly by the WNT gradient that polarizes the anteroposterior axis of the early neural plate, and rhombomere boundaries are positioned by graded retinoic acid signalling.

  • It is likely that the establishment of differences in cellular adhesiveness between neighbouring compartments constitutes the first step in forming a boundary between them. Subsequently, specialized boundary features are established. The Notch and WNT pathways have been implicated in this second step, whereas ephrin receptor (Eph)–ephrin signalling seems to be involved in both differential adhesion and cellular repulsion at boundaries.

Abstract

Fifteen years ago, cell lineage restriction boundaries were discovered in the embryonic vertebrate hindbrain, subdividing it into a series of cell-tight compartments (known as rhombomeres). Compartition, together with segmentally reiterative neuronal architecture and the nested expression of Hox genes, indicates that the hindbrain has a truly metameric organization. This finding initiated a search for compartments in other regions of the developing brain. The results of recent studies have clarified where compartment boundaries exist, have shed light on molecular mechanisms that underlie their formation and have revealed an important function of these boundaries: the positioning and stabilization of local signalling centres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Boundaries and local signalling centres in the developing vertebrate neural tube.
Figure 2: Hindbrain segmentation.
Figure 3: Formation of and signalling from the zona limitans intrathalamica.
Figure 4: Lineage restriction at and signalling from the chick zona limitans intrathalamica.
Figure 5: Compartment boundaries and local signalling centres in the developing fly wing.
Figure 6: Model for boundary formation.

Similar content being viewed by others

References

  1. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalisation of the wing disk of Drosophila. Nature New Biol. 245, 251–253 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence, P. A. A clonal analysis of segment development in Oncopeltus (Hemiptera). J. Embryol. Exp. Morphol. 30, 681–699 (1973).

    CAS  PubMed  Google Scholar 

  3. Morata, G. & Lawrence, P. A. Control of compartment development by the engrailed gene in Drosophila. Nature 255, 614–617 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila? Cell 85, 951–961 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Vincent, J. P. Compartment boundaries: where, why and how? Int. J. Dev. Biol. 42, 311–315 (1998).

    CAS  PubMed  Google Scholar 

  6. Dahmann, C. & Basler, K. Compartment boundaries: at the edge of development. Trends Genet. 15, 320–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Mann, R. S. & Morata, G. The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu. Rev. Cell Dev. Biol. 16, 243–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Irvine, K. D. & Rauskolb, C. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Vaage, S. The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Ergebnisse der Anatomie und Entwicklungsgeschichte 41, 3–87 (1969).

    CAS  PubMed  Google Scholar 

  10. Fraser, S., Keynes, R. & Lumsden, A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435 (1990). The first study to reveal cell lineage restriction at rhombomere boundaries of the vertebrate hindbrain.

    Article  CAS  PubMed  Google Scholar 

  11. Wilkinson, D. G., Bhatt, S., Cook, M., Boncinelli, E. & Krumlauf, R. Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409 (1989). The first report of segmental gene expression in the vertebrate hindbrain.

    Article  CAS  PubMed  Google Scholar 

  12. Hanneman, E., Trevarrow, B., Metcalfe, W. K., Kimmel, C. B. & Westerfield, M. Segmental pattern of development of the hindbrain and spinal cord of the zebrafish embryo. Development 103, 49–58 (1988).

    CAS  PubMed  Google Scholar 

  13. Lumsden, A. & Keynes, R. Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Trevarrow, B., Marks, D. L. & Kimmel, C. B. Organization of hindbrain segments in the zebrafish embryo. Neuron 4, 669–679 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Clarke, J. D. & Lumsden, A. Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118, 151–162 (1993).

    CAS  PubMed  Google Scholar 

  16. Eickholt, B. J., Graham, A., Lumsden, A. & Wizenmann, A. Rhombomere interactions control the segmental differentiation of hindbrain neurons. Mol. Cell. Neurosci. 18, 141–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Guthrie, S. & Lumsden, A. Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112, 221–229 (1991).

    CAS  PubMed  Google Scholar 

  18. Heyman, I., Kent, A. & Lumsden, A. Cellular morphology and extracellular space at rhombomere boundaries in the chick embryo hindbrain. Dev. Dyn. 198, 241–253 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Heyman, I., Faissner, A. & Lumsden, A. Cell and matrix specialisations of rhombomere boundaries. Dev. Dyn. 204, 301–315 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, Q., Alldus, G., Holder, N. & Wilkinson, D. G. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121, 4005–4016 (1995).

    CAS  PubMed  Google Scholar 

  21. Cheng, Y. C. et al. Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain. Dev. Cell 6, 539–550 (2004). Provides evidence that activation of the Notch pathway in vivo directs cells to rhombomere boundaries in zebrafish.

    Article  CAS  PubMed  Google Scholar 

  22. Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384, 630–634 (1996). Shows that expression of a singular Hox gene, Hoxb1 , is required to define r4-specific characteristics.

    Article  CAS  PubMed  Google Scholar 

  23. McClintock, J. M., Kheirbek, M. A. & Prince, V. E. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129, 2339–2354 (2002).

    CAS  PubMed  Google Scholar 

  24. Bell, E., Wingate, R. J. & Lumsden, A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 284, 2168–2171 (1999). Complements reference 22 by showing that Hoxb1 is sufficient to induce r4 character ectopically in r2. Taken together, the two studies indicate that Hoxb1 functions as a selector gene for r4 identity.

    Article  CAS  PubMed  Google Scholar 

  25. Jungbluth, S., Bell, E. & Lumsden, A. Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development 126, 2751–2758 (1999).

    CAS  PubMed  Google Scholar 

  26. Awatramani, R., Soriano, P., Rodriguez, C., Mai, J. J. & Dymecki, S. M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nature Genet. 35, 70–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Birgbauer, E. & Fraser, S. E. Violation of cell lineage restriction compartments in the chick hindbrain. Development 120, 1347–1356 (1994).

    CAS  PubMed  Google Scholar 

  28. Wingate, R. J. & Lumsden, A. Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122, 2143–2152 (1996).

    CAS  PubMed  Google Scholar 

  29. Figdor, M. C. & Stern, C. D. Segmental organization of embryonic diencephalon. Nature 363, 630–634 (1993). The first study that combines morphological considerations, gene expression data and fate mapping in an attempt to define a neuromeric organization of the diencephalon.

    Article  CAS  PubMed  Google Scholar 

  30. Fishell, G., Mason, C. A. & Hatten, M. E. Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362, 636–638 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A. & Boncinelli, E. Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690 (1992). The first report of a nested expression of homeobox genes in the early forebrain.

    Article  CAS  PubMed  Google Scholar 

  32. Reichert, H. Conserved genetic mechanisms for embryonic brain patterning. Int. J. Dev. Biol. 46, 81–87 (2002).

    PubMed  Google Scholar 

  33. Rubenstein, J. L., Martinez, S., Shimamura, K. & Puelles, L. The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578–580 (1994). The original version of the prosomeric model, which proposes that the developing forebrain is segmented and consists of six neuromeres.

    Article  CAS  PubMed  Google Scholar 

  34. Bell, E., Ensini, M., Gulisano, M. & Lumsden, A. Dynamic domains of gene expression in the early avian forebrain. Dev. Biol. 236, 76–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Larsen, C. W., Zeltser, L. M. & Lumsden, A. Boundary formation and compartition in the avian diencephalon. J. Neurosci. 21, 4699–4711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arnold-Aldea, S. A. & Cepko, C. L. Dispersion patterns of clonally related cells during development of the hypothalamus. Dev. Biol. 173, 148–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Golden, J. A. & Cepko, C. L. Clones in the chick diencephalon contain multiple cell types and siblings are widely dispersed. Development 122, 65–78 (1996).

    CAS  PubMed  Google Scholar 

  38. Szele, F. G. & Cepko, C. L. The dispersion of clonally related cells in the developing chick telencephalon. Dev. Biol. 195, 100–113 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Zervas, M., Millet, S., Ahn, S. & Joyner, A. L. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43, 345–357 (2004). State-of-the-art study that used genetic fate mapping with an inducible transgene in mice, which revealed cell lineage restriction at the DMB and the MHB.

    Article  CAS  PubMed  Google Scholar 

  40. Puelles, L. & Rubenstein, J. L. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26, 469–476 (2003). The latest incarnation of the prosomeric model, which proposes that the diencephalon consists of three neuromeres, whereas the telencephalon is unsegmented.

    Article  CAS  PubMed  Google Scholar 

  41. Zeltser, L. M., Larsen, C. W. & Lumsden, A. A new developmental compartment in the forebrain regulated by Lunatic fringe. Nature Neurosci. 4, 683–684 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, A. & Joyner, A. L. Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci. 24, 869–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nature Rev. Neurosci. 2, 99–108 (2001).

    Article  CAS  Google Scholar 

  44. Raible, F. & Brand, M. Divide et Impera — the midbrain–hindbrain boundary and its organizer. Trends Neurosci. 27, 727–734 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Millet, S., Bloch-Gallego, E., Simeone, A. & Alvarado-Mallart, R. M. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122, 3785–3797 (1996).

    CAS  PubMed  Google Scholar 

  46. Inoue, T., Nakamura, S. & Osumi, N. Fate mapping of the mouse prosencephalic neural plate. Dev. Biol. 219, 373–383 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Jungbluth, S., Larsen, C., Wizenmann, A. & Lumsden, A. Cell mixing between the embryonic midbrain and hindbrain. Curr. Biol. 11, 204–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Alexandre, P. & Wassef, M. The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. Development 130, 5331–5338 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Louvi, A., Alexandre, P., Metin, C., Wurst, W. & Wassef, M. The isthmic neuroepithelium is essential for cerebellar midline fusion. Development 130, 5319–5330 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Langenberg, T. & Brand, M. Neuromeric properties of the midbrain–hindbrain boundary region in zebrafish. Development (in the press). This study exploits the advantages of the zebrafish embryo — transparency and the comparably small number of cells for characterizing cell lineage restriction at the MHB.

  51. Crossley, P. H., Martinez, S. & Martin, G. R. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68 (1996). Landmark study showing that the inducing activity of the MHB can be mimicked by FGF8.

    Article  CAS  PubMed  Google Scholar 

  52. Echevarria, D., Vieira, C., Gimeno, L. & Martinez, S. Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res. Brain Res. Rev. 43, 179–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Chi, C. L., Martinez, S., Wurst, W. & Martin, G. R. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130, 2633–2644 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain–hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998).

    CAS  PubMed  Google Scholar 

  55. Reim, G. & Brand, M. spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development 129, 917–933 (2002).

    CAS  PubMed  Google Scholar 

  56. Sato, T., Araki, I. & Nakamura, H. Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development 128, 2461–2469 (2001).

    CAS  PubMed  Google Scholar 

  57. Liu, A. et al. FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors. Development 130, 6175–6185 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Matsumoto, K. et al. The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nature Neurosci. 7, 605–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Dorsky, R. I., Itoh, M., Moon, R. T. & Chitnis, A. Two tcf3 genes cooperate to pattern the zebrafish brain. Development 130, 1937–1947 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Riley, B. B. et al. Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain. Dev. Dyn. 231, 278–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Amoyel, M., Cheng, Y. -C., Jiang, Y. -J. & Wilkinson, D. G. Wnt regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain. Development 132, 775–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Maves, L., Jackman, W. & Kimmel, C. B. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 129, 3825–3837 (2002).

    CAS  PubMed  Google Scholar 

  63. Walshe, J., Maroon, H., McGonnell, I. M., Dickson, C. & Mason, I. Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr. Biol. 12, 1117–1123 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Ishibashi, M. & McMahon, A. P. A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development 129, 4807–4819 (2002).

    CAS  PubMed  Google Scholar 

  66. Kobayashi, D. et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129, 83–93 (2002). Shows that the transcription factors SIX3 and IRX3 are sufficient to define anterior and posterior domains of competence to respond to signals from the anterior neural border, the MHB and the floor plate.

    CAS  PubMed  Google Scholar 

  67. Kiecker, C. & Lumsden, A. Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nature Neurosci. 7, 1242–1249 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Braun, M. M., Etheridge, A., Bernard, A., Robertson, C. P. & Roelink, H. Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 130, 5579–5587 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Garcia-Lopez, R., Vieira, C., Echevarria, D. & Martinez, S. Fate map of the diencephalon and the zona limitans at the 10-somites stage in chick embryos. Dev. Biol. 268, 514–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Houart, C., Westerfield, M. & Wilson, S. W. A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391, 788–792 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Houart, C. et al. Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35, 255–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Shimamura, K. & Rubenstein, J. L. Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718 (1997).

    CAS  PubMed  Google Scholar 

  73. Walshe, J. & Mason, I. Unique and combinatorial functions of Fgf3 and Fgf8 during zebrafish forebrain development. Development 130, 4337–4349 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Placzek, M. & Briscoe, J. The floor plate: multiple cells, multiple signals. Nature Rev. Neurosci. 6, 230–240 (2005).

    Article  CAS  Google Scholar 

  75. Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, A. S., Anderson, S. A., Rubenstein, J. L., Lowenstein, D. H. & Pleasure, S. J. Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS. J. Neurosci. 21, RC132 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Assimacopoulos, S., Grove, E. A. & Ragsdale, C. W. Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J. Neurosci. 23, 6399–6403 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  PubMed  Google Scholar 

  79. Niehrs, C. Regionally specific induction by the Spemann–Mangold organizer. Nature Rev. Genet. 5, 425–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Wilson, S. W. & Houart, C. Early steps in the development of the forebrain. Dev. Cell 6, 167–181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kiecker, C. & Niehrs, C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, 4189–4201 (2001).

    CAS  PubMed  Google Scholar 

  82. Nordström, U., Jessell, T. M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signaling. Nature Neurosci. 5, 525–532 (2002).

    Article  PubMed  Google Scholar 

  83. Rhinn, M., Lun, K., Luz, M., Werner, M. & Brand, M. Positioning of the midbrain–hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development 132, 1261–1272 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Lagutin, O. V. et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 17, 368–379 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou, C. J., Pinson, K. I. & Pleasure, S. J. Severe defects in dorsal thalamic development in low-density lipoprotein receptor-related protein-6 mutants. J. Neurosci. 24, 7632–7639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zeltser, L. M. Shh-dependent formation of the ZLI is opposed by signals from the dorsal diencephalon. Development 132, 2023–2033 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. McKay, I. J. et al. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120, 2199–2211 (1994).

    CAS  PubMed  Google Scholar 

  88. Schneider-Maunoury, S., Seitanidou, T., Charnay, P. & Lumsden, A. Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124, 1215–1226 (1997).

    CAS  PubMed  Google Scholar 

  89. Manzanares, M. et al. The role of kreisler in segmentation during hindbrain development. Dev. Biol. 211, 220–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Waskiewicz, A. J., Rikhof, H. A. & Moens, C. B. Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev. Cell 3, 723–733 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Dupé, V. & Lumsden, A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128, 2199–2208 (2001).

    PubMed  Google Scholar 

  92. Maden, M. Retinoid signalling in the development of the central nervous system. Nature Rev. Neurosci. 3, 843–853 (2002).

    Article  CAS  Google Scholar 

  93. Trokovic, R. et al. Fgfr1-dependent boundary cells between developing mid- and hindbrain. Dev. Biol. 278, 428–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Blair, S. S. & Ralston, A. Smoothened-mediated Hedgehog signalling is required for the maintenance of the anterior-posterior lineage restriction in the developing wing of Drosophila. Development 124, 4053–4063 (1997).

    CAS  PubMed  Google Scholar 

  95. Rodriguez, I. & Basler, K. Control of compartmental affinity boundaries by hedgehog. Nature 389, 614–618 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Lawrence, P. A., Casal, J. & Struhl, G. The hedgehog morphogen and gradients of cell affinity in the abdomen of Drosophila. Development 126, 2441–2449 (1999).

    CAS  PubMed  Google Scholar 

  97. Araki, I. & Nakamura, H. Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate. Development 126, 5127–5135 (1999).

    CAS  PubMed  Google Scholar 

  98. Matsunaga, E., Araki, I. & Nakamura, H. Pax6 defines the di-mesencephalic boundary by repressing En1 and Pax2. Development 127, 2357–2365 (2000).

    CAS  PubMed  Google Scholar 

  99. Scholpp, S., Lohs, C. & Brand, M. Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130, 4881–4893 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Tepass, U., Godt, D. & Winklbauer, R. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Holtfreter, J. Gewebeaffinität, ein Mittel der embryonalen Formbildung. Arch Exp Zellforsch Besonders Gewebezucht 23, 169–209 (1939). The author of this classic paper suggested that differential cell affinities might be one of the driving forces in embryogenesis.

    Google Scholar 

  102. Duguay, D., Foty, R. A. & Steinberg, M. S. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Nittenberg, R. et al. Cell movements, neuronal organisation and gene expression in hindbrains lacking morphological boundaries. Development 124, 2297–2306 (1997).

    CAS  PubMed  Google Scholar 

  104. Wizenmann, A. & Lumsden, A. Segregation of rhombomeres by differential chemoaffinity. Mol. Cell. Neurosci. 9, 448–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Neyt, C., Welch, M., Langston, A., Kohtz, J. & Fishell, G. A short-range signal restricts cell movement between telencephalic proliferative zones. J. Neurosci. 17, 9194–9203 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Redies, C. & Takeichi, M. Cadherins in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Dev. Biol. 180, 413–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Redies, C. et al. Morphologic fate of diencephalic prosomeres and their subdivisions revealed by mapping cadherin expression. J. Comp. Neurol. 421, 481–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Inoue, T. et al. Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development 128, 561–569 (2001).

    CAS  PubMed  Google Scholar 

  109. Steinberg, M. S. & Takeichi, M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl Acad. Sci. USA 91, 206–209 (1994). Shows that mere differences in expression levels of cadherins are sufficient to render cell populations immiscible.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Palmer, A. & Klein, R. Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev. 17, 1429–1450 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Poliakov, A., Cotrina, M. & Wilkinson, D. G. Diverse roles of Eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Xu, Q., Mellitzer, G., Robinson, V. & Wilkinson, D. G. in vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Mellitzer, G., Xu, Q. & Wilkinson, D. G. Eph receptors and ephrins restrict cell intermingling and communication. Nature 400, 77–81 (1999). These two studies provide evidence that bidirectional Eph–ephrin signalling at rhombomere boundaries prevents cell intermingling between even-numbered and odd-numbered rhombomeres.

    Article  CAS  PubMed  Google Scholar 

  114. Cooke, J. E., Kemp, H. A. & Moens, C. B. EphA4 is required for cell adhesion and rhombomere-boundary formation in the zebrafish. Curr. Biol. 15, 536–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Rhinn, M., Dierich, A., Le Meur, M. & Ang, S. -L. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126, 4295–4304 (1999).

    CAS  PubMed  Google Scholar 

  116. Kopan, R. & Turner, D. L. The Notch pathway: democracy and aristocracy in the selection of cell fate. Curr. Opin. Neurobiol. 6, 594–601 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Mathis, L., Sieur, J., Voiculescu, O., Charnay, P. & Nicolas, J. F. Successive patterns of clonal cell dispersion in relation to neuromeric subdivision in the mouse neuroepithelium. Development 126, 4095–4106 (1999).

    CAS  PubMed  Google Scholar 

  118. Glickman, N. S., Kimmel, C. B., Jones, M. A. & Adams, R. J. Shaping the zebrafish notochord. Development 130, 873–887 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Guthrie, S., Prince, V. & Lumsden, A. Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118, 527–538 (1993).

    CAS  PubMed  Google Scholar 

  120. Pourquié, O. Vertebrate somitogenesis: a novel paradigm for animal segmentation? Int. J. Dev. Biol. 47, 597–603 (2003).

    PubMed  Google Scholar 

  121. Aulehla, A. & Herrmann, B. G. Segmentation in vertebrates: clock and gradient finally joined. Genes Dev. 18, 2060–2067 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Lynch, J. & Desplan, C. 'De-evolution' of Drosophila toward a more generic mode of axis patterning. Int. J. Dev. Biol. 47, 497–503 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Wilkinson for helpful comments on the manuscript, and both the Medical Research Council and the Wellcome Trust for supporting our work. We apologize to all researchers whose work we could not cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lumsden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Dlx

Emx

EphA4

fgf8

Gbx2

Hoxa2

Hoxb1

hoxb1a

Irx2

Krox20

Lfng

Nodal

Otx2

Pax6

pou2

rfng

SFRP2

SHH

Six3

Wnt1

Wnt8b

FURTHER INFORMATION

MRC Centre for Developmental Neurobiology

Glossary

COMPARTMENT

A module of the embryo that consists of polyclonally-related cells that do not mix with cells from neighbouring compartments.

PATTERNING

A developmental process during which cells that are initially equal acquire different identities.

BAUPLAN

German for 'construction plan'.

Hox GENES

A family of developmental regulator genes present in all animal phyla that are arranged in clusters in the genome and encode transcription factors with a DNA-binding homeobox.

SEGMENTATION

The process of dividing an embryonic region into semi-independent, cell lineage-restricted compartments — a way of organizing embryogenesis of a large region by subdividing it into a repetitive series of small fields.

HOMEOTIC SELECTOR GENES

Genes, such as those of the Hox family, that determine the positional identity of the embryonic region in which they are expressed. Absence or ectopic misexpression of such genes results in the lack or duplication of this region (homeotic transformation).

BRANCHIAL ARCHES

(Also called pharyngeal arches). A series of outpocketings in the neck region of an embryo, each of which consists of an epithelial pocket of endoderm and ectoderm that becomes filled by both mesoderm and cranial neural crest-derived mesenchymal cells. The first branchial arch gives rise to the jaws and other head structures.

METAMERIC

A form of segmentation by which all segments show an underlying serial homology.

FLOOR PLATE

The ventral-most longitudinal subdivision of the neural tube of the midbrain and the spinal cord, which acts as a local signalling centre.

VENTRICULAR ZONE

(Also called the proliferative zone). The part of the neuroepithelium that faces the ventricular (inner) surface of the neural tube, where cells are proliferating.

MANTLE ZONE

An outer layer of the neuroepithelium containing postmitotic neurons that have migrated radially away from the ventricular zone.

NEUROMERIC ORGANIZATION

The segmental organization of the neuroepithelium.

LUNATIC FRINGE

A glycosyl transferase that activates the Notch receptor and mediates differential sensitivity to various Notch ligands.

ALLOMETRIC GROWTH

Growth rates of a tissue vary along different axes in space, which drives shape changes of organs during embryogenesis.

AMNIOTE

Birds, reptiles and mammals are all amniotes; that is, their embryos are enclosed within an extraembryonic membrane, the amnion, which contains amniotic fluid. This provides a 'private pond' for the developing embryos of these land-dwelling vertebrates.

ORGANIZER

A small group of cells at the gastrula stage of vertebrate embryos that can induce a secondary embryonic axis in a non-autonomous fashion when transplantated into a host embryo.

GASTRULA

Early embryonic stage during which the just-formed germ layers are reorganized by extensive tissue movements.

COMPETENCE

The ability of a tissue to respond to an inducing signal.

MORPHOLINO ANTISENSE OLIGONUCLEOTIDES

Synthetic oligonucleotides that are exceptionally stable and can serve as tools to block translation or RNA splicing.

ELECTROPORATION

A technique for gene delivery into cells, which allows the transfer of expression plasmids or morpholinos to groups of cells in living embryos.

PITUITARY GLAND

An endocrine gland that forms through an interaction between neuroectoderm and oral ectoderm.

MORPHOGEN

A secreted factor that can induce more than two different cell fates over a sheet of cells in a concentration-dependent manner by forming a gradient.

MESODERM

Germ layer that forms in between ectoderm and endoderm. Mesoderm is crucially involved in neural patterning during gastrulation.

IMAGINAL DISCS

Epithelial pouches in insect larvae that give rise to the sensory organs and body appendages of the adult.

RADIAL GLIA

Glial cells that span the radial axis of neuroepithelium and serve as guidance cues for newly born postmitotic neurons on their way into the mantle zone.

NOTCH

A receptor at the heart of a signalling pathway that regulates a multitude of developmental decisions.

SIGNALLING MODULE

A group of signalling molecules of more than just one pathway that is reiteratively used in different tissues.

SOMITOGENESIS

Segmentation of paraxial mesoderm, which results in the formation of two stripes of distinctive mesodermal blocks along the anteroposterior axis that will give rise to muscle, vertebrae and dermis.

LONG- AND SHORT-GERM DEVELOPMENT

Different modes of insect development; in long-germ insects, all segments are formed from the blastoderm, whereas in short-germ insects, segments are formed by sequential growth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiecker, C., Lumsden, A. Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6, 553–564 (2005). https://doi.org/10.1038/nrn1702

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing