Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic peptide release and peptide-dependent behaviours

Key Points

  • Neurons use more than 100 different peptides as chemical signals to communicate information, and these have a role in information processing that is quite unlike that of conventional neurotransmitters. Neuropeptides are released from all parts of a neuron, including the axon, soma and, especially, the dendrites, and so are not restricted spatially by synaptic wiring.

  • Depending on the nature of the afferent or physiological stimulus, the dendritic release and axonal release of peptides can be regulated wholly independently. Exocytosis of vasopressin and oxytocin from axon terminals is linked to electrical activity, whereas some chemical signals, notably oxytocin and vasopressin themselves, can elicit dendritic peptide release without increasing electrical activity. Activation of peptide receptors on the dendrites or soma elevates intracellular Ca2+ concentrations and triggers exocytosis, and once dendritic peptide release is triggered, feedback allows the release to be self-sustaining and therefore long-lasting. One function of dendritically released peptides is to autoregulate the cells of origin.

  • Signals that mobilize intracellular Ca2+ stores have another important consequence: they can 'prime' dendritic stores of peptides to make them available for subsequent activity-dependent release. Spike activity in oxytocin or vasopressin neurons in vivo does not always result in measurable dendritic peptide release, but agents that mobilize Ca2+ from intracellular stores induce dendritic release directly. Moreover, after exposure to these agents, subsequent activation evokes large amounts of dendritic peptide release.

  • Many neuropeptides have profound effects on behaviours that are exerted at sites that, in some cases, richly express peptide receptors but are innervated by few peptide-containing projections. Here, we review evidence that dendrites are a major source of peptides released in the brain; this release is not specifically targeted at synapses, and the long half-life of peptides in the CNS and their abundance in the extracellular fluid mean that, after release, they can diffuse to distant targets. At their targets, the process of priming allows peptides to functionally reorganize neuronal networks, providing a substrate for prolonged behavioural effects.

Abstract

Neuropeptides that are released from dendrites, such as oxytocin and vasopressin, function as autocrine or paracrine signals at their site of origin, but can also act at distant brain targets to evoke long-lasting changes in behaviour. Oxytocin, for instance, has profound effects on social bonding that are exerted at sites that richly express oxytocin receptors, but which are innervated by few, if any, oxytocin-containing projections. How can a prolonged, diffuse signal have coherent behavioural consequences? The recently demonstrated ability of neuropeptides to prime vesicle stores for activity-dependent release could lead to a temporary functional reorganization of neuronal networks harbouring specific peptide receptors, providing a substrate for long-lasting effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dendritic exocytosis.
Figure 2: Autoregulation by dendritic vasopressin release.
Figure 3: Differential regulation of dendritic and axonal oxytocin secretion.
Figure 4: Conditional priming of peptide release.
Figure 5: Priming of dendritic oxytocin.

Similar content being viewed by others

References

  1. Hokfelt, T. et al. Neuropeptides — an overview. Neuropharmacology 39, 1337–1356 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Kalra, S. P. et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocrine Rev. 20, 68–100 (1999).

    CAS  Google Scholar 

  3. Merighi, A. Costorage and coexistence of neuropeptides in the mammalian CNS. Prog. Neurobiol. 66, 161–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Landgraf, R. & Neumann, I. D. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 25, 150–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Theodosis, D. T., Montagnese, C., Rodriguez, F., Vincent, J. D. & Poulain, D. A. Oxytocin induces morphological plasticity in the adult hypothalamo–neurohypophysial system. Nature 322, 738–740 (1986). Demonstrates the key role of oxytocin in the induction of morphological reorganization of the supraoptic nucleus that occurs in lactation.

    Article  CAS  PubMed  Google Scholar 

  7. Mens, W. B., Witter, A. & van Wimersma Greidanus, T. B. Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res. 262, 143–149 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Cone, R. D. Anatomy and regulation of the central melanocortin system. Nature Neurosci. 8, 571–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Torrealba, F. & Carrasco, M. A. A review on electron microscopy and neurotransmitter systems. Brain Res. Rev. 47, 5–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Horvath, T. L., Bechmann, I., Naftolin, F., Kalra, S. P. & Leranth, C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res. 756, 283–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Andersson, P. O., Bloom, S. R., Edwards, A. V. & Jarhult, J. Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat. J. Physiol. (Lond.) 322, 469–483 (1982).

    Article  CAS  Google Scholar 

  12. Fulop, T., Radabaugh, S. & Smith, C. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J. Neurosci. 25, 7324–7332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris, J. F. & Pow, D. V. Widespread release of peptides in the central nervous system: quantitation of tannic acid-captured exocytoses. Anat. Rec. 231, 437–445 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Ludwig, M. & Pittman, Q. J. Talking back: dendritic neurotransmitter release. Trends Neurosci. 26, 255–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Castel, M., Morris, J. & Belenky, M. Non-synaptic and dendritic exocytosis from dense-cored vesicles in the suprachiasmatic nucleus. Neuroreport 7, 543–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Landry, M., Vila-Porcile, E., Hokfelt, T. & Calas, A. Differential routing of coexisting neuropeptides in vasopressin neurons. Eur. J. Neurosci. 17, 579–589 (2003).

    Article  PubMed  Google Scholar 

  17. Simmons, M. L., Terman, G. W., Gibbs, S. M. & Chavkin, C. L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells. Neuron 14, 1265–1272 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Armstrong, W. E. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog. Neurobiol. 47, 291–339 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Pow, D. V. & Morris, J. F. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32, 435–439 (1989). This landmark ultrastructural study used tannic acid perfusion to visualize exocytoses of LDCVs, which showed the importance of dendritic secretion in the release of oxytocin and vasopressin in the brain.

    Article  CAS  PubMed  Google Scholar 

  20. Guan, J. L. et al. Electron microscopy examination of galanin-like peptide (GALP)-containing neurons in the rat hypothalamus. Regul. Pept. 126, 73–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Wray, S. Development of gonadotropin-releasing hormone-1 neurons. Front. Neuroendocrinol. 23, 292–316 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Caraty, A., Delaleu, B., Chesneau D. & Fabre-Nys, C. Sequential role of E2 and GnRH for the expression of estrous behavior in ewes. Endocrinology 143, 139–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Campbell, R E., Han, S. K. & Herbison, A. E. Biocytin filling of adult gonadotropin-releasing hormone neurons in situ reveals extensive, spiny, dendritic processes. Endocrinology 146, 1163–1169 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Goldsmith, P. C., Thind, K. K., Perera, A. D. & Plant, T. M. Glutamate-immunoreactive neurons and their gonadotropin-releasing hormone–neuronal interactions in the monkey hypothalamus. Endocrinology 134, 858–868 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Terasawa, E. Control of luteinizing hormone-releasing hormone pulse generation in nonhuman primates. Cell. Mol. Neurobiol. 15, 141–164 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Martinez-Fuentes, A. J., Hu, L., Krsmanovic, L. Z. & Catt, K. J. Gonadotropin-releasing hormone (GnRH) receptor expression and membrane signaling in early embryonic GnRH neurons: role in pulsatile neurosecretion. Mol. Endocrinol. 18, 1808–1817 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Morris, J. F. in Dendritic Neurotransmitter Release (ed. Ludwig, M.) 15–33 (Springer, New York, 2005).

    Book  Google Scholar 

  28. Ludwig M. Dendritic release of vasopressin and oxytocin. J. Neuroendocrinol. 10, 881–895 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Voisin, D. L. & Bourque, C. W. Integration of sodium and osmosensory signals in vasopressin neurons. Trends Neurosci. 25, 199–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Ludwig, M., Callahan, M. F., Neumann, I., Landgraf, R. & Morris, M. Systemic osmotic stimulation increases vasopressin and oxytocin release within the supraoptic nucleus. J. Neuroendocrinol. 6, 369–373 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Moos, F. et al. Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp. Brain Res. 76, 593–602 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Sabatier, N. et al. α-Melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J. Neurosci. 23, 10351–10358 (2003). Showed that α-MSH mobilizes intracellular Ca2+ stores, triggers dendritic release, and induces expression of c- fos in oxytocin cells, but also inhibits their electrical activity and inhibits secretion from the nerve endings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leng, G., Brown, C. H. & Russell, J. A. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog. Neurobiol. 57, 625–655 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Freund-Mercier, M. J., Stoeckel, M. E. & Klein, M. J. Oxytocin receptors on oxytocin neurones: histoautoradiographic detection in the lactating rat. J. Physiol. (Lond.) 480, 155–161 (1994).

    Article  CAS  Google Scholar 

  35. Hurbin, A., Orcel, H., Alonso, G., Moos, F. & Rabie, A. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance. Endocrinology 143, 456–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lambert, R. C., Dayanithi, G., Moos, F. C. & Richard, P. A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J. Physiol. (Lond.) 478, 275–288 (1994).

    Article  CAS  Google Scholar 

  37. Dayanithi, G., Widmer, H. & Richard, P. Vasopressin-induced intracellular Ca2+ increase in isolated rat supraoptic cells. J. Physiol. (Lond.) 490, 713–727 (1996).

    Article  CAS  Google Scholar 

  38. Ludwig, M. et al. Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418, 85–89 (2002). Together with reference 39, this study showed that agents that mobilize intracellular Ca2+ stores can prime subsequent activity-dependent release of both oxytocin and vasopressin from dendrites in the supraoptic nucleus.

    Article  CAS  PubMed  Google Scholar 

  39. Ludwig, M. et al. Regulation of activity-dependent dendritic vasopressin release from rat supraoptic neurones. J. Physiol. (Lond.) 564, 515–522 (2005).

    Article  CAS  Google Scholar 

  40. Lewis, C. E., Morris, J. F., Fink, G. & Johnson, M. Changes in the granule population of gonadotrophs of hypogonadal (hpg) and normal female mice associated with the priming effect of LH-releasing hormone in vitro. J. Endocrinol. 109, 35–44 (1986). This electron microscopic study showed that, in rats exposed to oestrogen, LHRH can prime luteinizing hormone release by promoting a redistribution of secretory granules from the interior of gonadotrophs to the cell margins.

    Article  CAS  PubMed  Google Scholar 

  41. Fink, G. The self-priming effect of LHRH: a unique servomechanism and possible cellular model for memory. Front. Neuroendocrinol. 16, 183–190 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Scullion, S., Brown, D. & Leng, G. Modelling the pituitary response to luteinizing hormone-releasing hormone. J. Neuroendocrinol. 16, 265–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Tobin, V. A. et al. Thapsigargin-induced mobilisation of dendritic dense-cored vesicles in rat supraoptic neurons. Eur. J. Neurosci. 19, 2909–2912 (2004).

    Article  PubMed  Google Scholar 

  44. Brown, C. H. & Bourque, C. W. Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus. J. Physiol. (Lond.) 557, 949–960 (2004).

    Article  CAS  Google Scholar 

  45. Brown, C. H. & Bourque, C. W. Mechanisms of rhythmogenesis: insight from hypothalamic vasopressin neurons. Trends Neurosci. 5 Dec 2006 (10.1016/j.tins.2005.11.005).

  46. Ludwig, M. & Leng, G. Autoinhibition of supraoptic nucleus vasopressin neurons in vivo — a combined retrodialysis/electrophysiological study in rats. Eur. J. Neurosci. 9, 2532–2540 (1997). Together with reference 47, this study showed the local effects of dendritically released vasopressin on vasopressin neurons.

    Article  CAS  PubMed  Google Scholar 

  47. Gouzenes, L., Desarmenien, M. G., Hussy, N., Richard, P. & Moos, F. C. Vasopressin regularizes the phasic firing pattern of rat hypothalamic magnocellular neurons. J. Neurosci. 18, 1879–1885 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sabatier, N., Richard, P. & Dayanithi, G. Activation of multiple intracellular transduction signals by vasopressin in vasopressin-sensitive neurones of the rat supraoptic nucleus. J. Physiol. (Lond.) 513, 699–710 (1998).

    Article  CAS  Google Scholar 

  49. Kombian, S. B., Mouginot, D., Hirasawa, M. & Pittman, Q. J. Vasopressin preferentially depresses excitatory over inhibitory synaptic transmission in the rat supraoptic nucleus in vitro. J. Neuroendocrinol. 12, 361–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Hirasawa, M. et al. Dendritically released transmitters cooperate via autocrine and retrograde actions to inhibit afferent excitation in rat brain. J. Physiol. (Lond.) 559, 611–624 (2004).

    Article  CAS  Google Scholar 

  51. Brussaard, A. B., Kits, K. S. & de Vlieger, T. A. Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat. J. Physiol. (Lond.) 497, 495–507 (1996).

    Article  CAS  Google Scholar 

  52. Koksma, J. J. et al. Oxytocin regulates neurosteroid modulation of GABAA receptors in supraoptic nucleus around parturition. J. Neurosci. 23, 788–797 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Kock, C. P., Burnashev, N., Lodder, J. C., Mansvelder, H. D. & Brussaard, A. B. NMDA receptors induce somatodendritic secretion in hypothalamic neurones of lactating female rats. J. Physiol. (Lond.) 561, 53–64 (2004).

    Article  CAS  Google Scholar 

  54. Hirasawa, M., Kombian, S. B. & Pittman, Q. J. Oxytocin retrogradely inhibits evoked, but not miniature, EPSCs in the rat supraoptic nucleus: role of N- and P/Q-type calcium channels. J. Physiol. (Lond.) 532, 595–607 (2001). References 51–54 demonstrate that secretion from the dendrites of supraoptic neurons feeds back to regulate transmitter release from presynaptic afferent terminals in the supraoptic nucleus.

    Article  CAS  Google Scholar 

  55. Russell, J. A., Leng, G. & Douglas, A. J. The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy. Front. Neuroendocrinol. 24, 27–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. de Kock, C. P. et al. Somatodendritic secretion in oxytocin neurons is upregulated during the female reproductive cycle. J. Neurosci. 23, 2726–2734 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lambert, R. C., Moos, F. C. & Richard, P. Action of endogenous oxytocin within the paraventricular or supraoptic nuclei: A powerful link in the regulation of the bursting pattern of oxytocin neurons during the milk-ejection reflex in rats. Neuroscience 57, 1027–1038 (1993). Showed that application of an oxytocin antagonist to a single supraoptic nucleus can block the milk-ejection reflex, demonstrating the essential role of local oxytocin release in generating the synchronized bursts that underlie the reflex.

    Article  CAS  PubMed  Google Scholar 

  58. Hatton, G. I. Dynamic neuronal–glial interactions: an overview 20 years later. Peptides 25, 403–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. McGregor, D. & Leng, G. Modelling the hypothalamic control of growth hormone secretion. J. Neuroendocrinol. 17, 788–203 (2005).

    Article  CAS  Google Scholar 

  60. Washburn, C. L. et al. Regulation of peptidergic vesicle mobility by secretagogues. Traffic 3, 801–809 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Bevan, S. & Parker, D. Metaplastic facilitation and ultrastructural changes in synaptic properties are associated with long-term modulation of the lamprey locomotor network. J. Neurosci. 24, 9458–9468 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Turner, T. T. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles. J. Neurosci. 24, 11328–11336 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shakiryanova, D., Tully, A., Hewes, R. S., Deitcher, D. L. & Levitan, E. S. Activity-dependent liberation of synaptic neuropeptide vesicles. Nature Neurosci. 8, 173–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Coll, A. P., Farooqi, I. S., Challis, B. G., Yeo, G. S. & O'Rahilly, S. Proopiomelanocortin and energy balance: insights from human and murine genetics. J. Clin. Endocrinol. Metab. 89, 2557–1562 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Martin, W. J. & MacIntyre, D. E. Melanocortin receptors and erectile function. Eur. Urol. 45, 706–713 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Rosen, R. C., Diamond, L. E., Earle, D. C., Shadiack, A. M. & Molinoff, P. B. Evaluation of the safety, pharmacokinetics and pharmacodynamic effects of subcutaneously administered PT-141, a melanocortin receptor agonist, in healthy male subjects and in patients with an inadequate response to Viagra. Int. J. Impot. Res. 16, 135–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kishi, T. & Elmquist, J. K. Body weight is regulated by the brain: a link between feeding and emotion. Mol. Psychiatry 10, 132–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Lipton, J., Kleemann, G., Ghosh, R., Lints, R. & Emmons, S. W. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J. Neurosci. 24, 7427–7434 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Argiolas, A. & Gessa, G. L. Central functions of oxytocin. Neurosci. Biobehav. Rev. 15, 217–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Insel, T. R. & Young, L. J. The neurobiology of attachment. Nature Rev. Neurosci. 2, 129–136 (2001).

    Article  CAS  Google Scholar 

  71. Ferguson, J. N., Young, L. J. & Insel, T. R. The neuroendocrine basis of social recognition. Front. Neuroendocrinol. 23, 200–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Kendrick, K. M. Oxytocin, motherhood and bonding. Exp. Physiol. 85, 111S–124S (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Cho, M. M., DeVries, A. C., Williams, J. R. & Carter, C. S. The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behav. Neurosci. 113, 1071–1079 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Ferguson, J. N. et al. Social amnesia in mice lacking the oxytocin gene. Nature Genet. 25, 284–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Young, L. J. & Wang, Z. The neurobiology of pair bonding. Nature Neurosci. 7, 1048–1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Cushing, B. S. & Carter, C. S. Peripheral pulses of oxytocin increase partner preferences in female, but not male, prairie voles. Horm. Behav. 37, 49–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. McCarthy, M. M., McDonald, C. H., Brooks, P. J. & Goldman, D. An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiol. Behav. 60, 1209–1215 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Bale, T. L., Davis, A. M., Auger, A. P., Dorsa, D. M. & McCarthy, M. M. CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J. Neurosci. 21, 2546–2552 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choleris, E., Kavaliers, M. & Pfaff, D. W. Functional genomics of social recognition. J. Neuroendocrinol. 16, 383–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Kavaliers, M. et al. Oxytocin and estrogen receptor α and β knockout mice provide discriminably different odor cues in behavioral assays. Genes Brain Behav. 3, 189–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676 (2005). These results concur with animal research that suggests an essential role for oxytocin as a biological basis of prosocial approach behaviour.

    Article  CAS  PubMed  Google Scholar 

  82. Kirsch, P. et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25, 11489–11493 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McCarthy, M. M. & Altemus, M. Central nervous system actions of oxytocin and modulation of behavior in humans. Mol. Med. Today 3, 269–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Carmichael, M. S., Warburton, V. L., Dixen, J. & Davidson, J. M. Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Arch. Sex. Behav. 23, 59–79 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Hughes, A. M., Everitt, B. J., Lightman, S. L. & Todd, K. Oxytocin in the central nervous system and sexual behaviour in male rats. Brain Res. 414, 133–137 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Swanson, L. W. & Sawchenko, P. E. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31, 410–417 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Castel, M. & Morris, J. F. The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24, 937–966 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Tache, Y., Garrick, T. & Raybould, H. Central nervous system action of peptides to influence gastrointestinal motor function. Gastroenterology 98, 517–528 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Argiolas, A. & Melis, M. R. The role of oxytocin and the paraventricular nucleus in the sexual behaviour of male mammals. Physiol. Behav. 83, 309–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Uhl-Bronner, S., Waltisperger, E., Martinez-Lorenzana, G., Condes Lara, M. & Freund-Mercier, M. J. Sexually dimorphic expression of oxytocin binding sites in forebrain and spinal cord of the rat. Neuroscience 135, 147–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Witt, D. M. & Insel, T. R. Increased Fos expression in oxytocin neurons following masculine sexual behavior. J. Neuroendocrinol. 6, 13–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Ferguson, J. N., Aldag, J. M., Insel, T. R. & Young, L. J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 21, 8278–8285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Terenzi, M. G. & Ingram, C. D. Oxytocin-induced excitation of neurones in the rat central and medial amygdaloid nuclei. Neuroscience 134, 345–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Herkenham, M. Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23, 1–38 (1987). A landmark review that carefully documents examples of many mismatches between the distribution of peptide-containing fibres and peptide receptors.

    Article  CAS  PubMed  Google Scholar 

  96. Engelmann, M., Wotjak, C. T., Ebner, K. & Landgraf, R. Behavioural impact of intraseptally released vasopressin and oxytocin in rats. Exp. Physiol. 85, 125S–130S (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Engelmann, M., Ludwig, M. & Landgraf, R. Simultaneous monitoring of intracerebral release and behavior: endogenous vasopressin improves social recognition. J. Neuroendocrinol. 64, 391–395 (1994).

    Article  Google Scholar 

  98. Keverne, E. B. & Curley, J. P. Vasopressin, oxytocin and social behaviour. Curr. Opin. Neurobiol. 14, 777–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Winslow, J. T. & Insel, T. R. Neuroendocrine basis of social recognition. Curr. Opin. Neurobiol. 14, 248–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Phelps, S. M. & Young, L. J. Extraordinary diversity in vasopressin (V1a) receptor distributions among wild prairie voles (Microtus ochrogaster): patterns of variation and covariation. J. Comp. Neurol. 466, 564–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Hammock, E. A. & Young, L. J. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308, 1630–1634 (2005). Evidence that individual variations in social behaviour within a species are associated with individual differences in the expression of vasopressin receptors in the brain.

    Article  CAS  PubMed  Google Scholar 

  102. Hammock, E. A., Lim, M. M., Nair, H. P. & Young, L. J. Association of vasopressin 1a receptor levels with a regulatory microsatellite and behavior. Genes Brain Behav. 4, 289–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Lim, M. M. et al. Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature 429, 754–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Bielsky, I. F., Hu, S. B., Ren, X., Terwilliger, E. F. & Young, L. J. The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47, 503–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Landgraf, R. et al. Viral vector-mediated gene transfer of the vole V1a vasopressin receptor in the rat septum: improved social discrimination and active social behaviour. Eur. J. Neurosci. 18, 403–411 (2003).

    Article  PubMed  Google Scholar 

  106. Hokfelt, T., Bartfai, T. & Bloom, F. Neuropeptides: opportunities for drug discovery. Lancet Neurol. 2, 463–472 (2003).

    Article  PubMed  Google Scholar 

  107. Tricoire, H., Malpaux, B. & Moller, M. Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid. J. Comp. Neurol. 456, 39–47 (2003).

    Article  PubMed  Google Scholar 

  108. Duncan, R. R. et al. Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422, 176–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Robinson, I. C. Neurohypophysial peptides in cerebrospinal fluid. Prog. Brain Res. 60, 129–145 (1983).

    Article  CAS  PubMed  Google Scholar 

  110. Soldo, B. L., Giovannucci, D. R., Stuenkel, E. L. & Moises, H. C. Ca2+ and frequency dependence of exocytosis in isolated somata of magnocellular supraoptic neurones of the rat hypothalamus. J. Physiol. (Lond.) 555, 699–711 (2004).

    Article  CAS  Google Scholar 

  111. Coombes, J. E., Robinson, I. C., Antoni, F. A. & Russell, J. A. Release of oxytocin into blood and into cerebrospinal fluid induced by naloxone in anaesthetized morphine-dependent rats: the role of the paraventricular nucleus. J. Neuroendocrinol. 3, 551–561 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Commission, the Wellcome Trust, UK, and the Biotechnology and Biological Sciences Research Council (BBSRC), UK. We thank V. Tobin for help with the production of the immunofluorescence pictures.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ludwig's homepage

Leng's homepage

Glossary

Arcuate nucleus

A cell group located in the mediobasal hypothalamus. It is involved in regulating the secretion of prolactin and growth hormone, and in appetite and metabolism.

Priming

In this context, priming refers to the process by which LDCVs are prepared and made available for subsequent activity-dependent release.

Small synaptic vesicle

(SSV). A small secretory vesicle (50 nm in diameter) containing neurotransmitters that are released during calcium-regulated exocytosis. Release occurs mainly at the presynaptic terminal into the synaptic cleft. Under the electron microscope, the vesicle appears clear.

Large dense-core vesicle

(LDCV). A large secretory vesicle (100–150 nm in diameter) that contains protein or peptide, which can be released from all parts of a neuron. Under the electron microscope, a large dense core can be seen at the centre of the vesicle.

Magnocellular neuron

A large neuron (20–30 μm in diameter) of the supraoptic and paraventricular nuclei of the hypothalamus that projects to the posterior pituitary and releases oxytocin or vasopressin into the blood.

Parvocellular neuron

Neurons of the paraventricular nucleus that do not project to the posterior pituitary. Some of these project to various brain regions and some project to the median eminence to regulate hormone secretion from the anterior pituitary.

Omega fusion profile

An omega-shaped figure of the cell membrane that is visible during exocytosis, denoting release of a single dense-core vesicle.

Microdialysis

A technique in which semi-permeable membranes are used to sample from, or deliver molecules to, the extracellular environment in living tissue.

Osmotic stimulation

An experimentally induced change in plasma osmolality to alter the electrical activity of vasopressin neurons, which determines the rate of vasopressin secretion into blood.

c-fos

An immediate-early gene that is 'turned on' transiently and rapidly in response to a wide variety of cellular stimuli. It is commonly used as a marker of neuronal activation.

Thapsigargin-sensitive intracellular store

Intracellular stores of the sarcoplasmic or endoplasmic reticulum. The plant extract thapsigargin specifically inhibits the endoplasmic reticulum Ca2+-ATPase, and can discharge Ca2+ from these stores.

Self-priming

The process by which a secreted product 'primes' further release of the same product. Ovulation is triggered when LHRH release triggers a surge of luteinizing hormone secretion from the anterior pituitary. After exposure to oestrogen, the gonadotroph response to LHRH escalates with successive exposures to LHRH, partly because of an intracellular action of LHRH whereby the readily releasable pool of luteinizing hormone is augmented.

Gonadotrophs

Endocrine cells of the anterior pituitary gland that synthesize and secrete the gonadotrophic hormones luteinizing hormone and follicle-stimulating hormone. The gonadotrophic hormones regulate spermatogenesis in males and the ovarian cycle in females.

Constant-collision stimulation

A technique that involves activating the neighbours of a recorded cell synchronously in an activity-dependent manner, mimicking the coordination of neuronal activity that precedes reflex milk-ejection.

Hormone

A chemical messenger from one group of cells that acts on another, distant group of cells. Hormones are secreted directly into the bloodstream or other body fluids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, M., Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7, 126–136 (2006). https://doi.org/10.1038/nrn1845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing