Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural tube defects and folate: case far from closed

Key Points

  • Neural tube closure is a highly complex process that occurs during embryogenesis. Failure of the neural tube to close can lead to neural tube defects (NTDs) such as anencephaly and spina bifida.

  • Periconceptional use of folic acid supplements prevents about a half to three-quarters of cases of NTDs. The main function of the metabolism of the vitamin folate is to transport one-carbon units, which are used in the synthesis of DNA building blocks (purines and thymidine) and for methylation of numerous compounds, including DNA, RNA, proteins and lipids.

  • A variant of the gene methylenetetrahydrofolate reductase (MTHFR) is the first genetic risk factor to be identified for NTDs. This role goes some way to explaining the prevention of NTDs by folic acid, a precursor of the natural substrate of MTHFR.

  • Knowledge of folate metabolism and the biochemical role of MTHFR has led to the development of the methylation hypothesis for NTDs, which suggests that reduced cellular methylation hampers neural tube closure.

  • If folic acid prevents NTDs through improved methylation, new therapeutic strategies, such as the administration of agents involved in donating a methyl group, for example, riboflavin, vitamin B12, methionine and choline, must be explored.

Abstract

Neural tube closure takes place during early embryogenesis and requires interactions between genetic and environmental factors. Failure of neural tube closure is a common congenital malformation that results in morbidity and mortality. A major clinical achievement has been the use of periconceptional folic acid supplements, which prevents 50–75% of cases of neural tube defects. However, the mechanism underlying the beneficial effects of folic acid is far from clear. Biochemical, genetic and epidemiological observations have led to the development of the methylation hypothesis, which suggests that folic acid prevents neural tube defects by stimulating cellular methylation reactions. Exploring the methylation hypothesis could direct us towards additional strategies to prevent neural tube defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural tube closure in the developing mouse.
Figure 2: Structures of folates.
Figure 3: Simplified folate metabolism.
Figure 4: The three MTHFR genotypes affect methylation and DNA synthesis to different extents.
Figure 5: Folate metabolism is influenced by environmental and genetic factors.

Similar content being viewed by others

References

  1. Elwood, J. M., Little, J. & Elwood, J. H. Epidemiology and Control of Neural Tube Defects (Oxford Univ. Press, 1992).

    Google Scholar 

  2. Waitzman, N. J., Romano, P. S. & Scheffler, R. M. Estimates of the economic costs of birth defects. Inquiry 31, 188–205 (1994).

    CAS  PubMed  Google Scholar 

  3. Hall, J. G. et al. Clinical, genetic, and epidemiological factors in neural tube defects. Am. J. Hum. Genet. 43, 827–837 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Copp, A. J., Greene, N. D. E. & Murdoch, J. N. The genetic basis of mammalian neurulation. Nature Rev. Genet. 4, 784–793 (2003). Excellent review of mammalian neurulation.

    Article  PubMed  Google Scholar 

  5. Detrait, E. R. et al. Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicol. Teratol. 27, 515–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smithells, R. W., Sheppard, S. & Schorah, C. J. Vitamin deficiencies and neural tube defects. Arch. Dis. Child. 51, 944–950 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Laurence, K. M. et al. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. BMJ 282, 1509–1511 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smithells, R. W. et al. Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch. Dis. Child. 56, 911–918 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holmes-Siedle, M. et al. Vitamin supplementation and neural tube defects. Lancet 319, 275–276 (1982).

    Article  Google Scholar 

  10. Smithells, R. W. et al. Further experience of vitamin supplementation for prevention of neural tube defect recurrences. Lancet 1, 1027–1031 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Seller, M. J. & Nevin, N. C. Periconceptional vitamin supplementation and the prevention of neural tube defects in south-east England and Northern Ireland. J. Med. Genet. 21, 325–330 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vergel, R. G. et al. Primary prevention of neural tube defects with folic acid supplementation: Cuban experience. Prenat. Diagn. 10, 149–152 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338, 131–137 (1991).

  14. Czeizel, A. E. & Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 327, 1832–1835 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Mulinare, J. et al. Periconceptional use of multivitamins and the occurrence of neural tube defects. JAMA 260, 3141–3145 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Bower, C. & Stanley, F. J. Dietary folate as a risk factor for neural-tube defects: evidence from a case-control study in Western Australia. Med. J. Aust. 150, 613–619 (1989).

    CAS  PubMed  Google Scholar 

  17. Milunsky, A. et al. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA 262, 2847–2852 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Werler, M. M., Shapiro, S. & Mitchell, A. A. Periconceptional folic acid exposure and risk of occurrent neural tube defects. JAMA 269, 1257–1261 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Shaw, G. M. et al. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology 6, 219–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Berry, R. J. et al. Prevention of neural-tube defects with folic acid in China. China–U.S. Collaborative Project for Neural Tube Defect Prevention. N. Engl. J. Med. 341, 1485–1490 (1999). Large recent study showing that oral folic acid strongly reduces the number of NTDs.

    Article  CAS  PubMed  Google Scholar 

  21. Hernandez-Diaz, S. et al. Folic acid antagonists during pregnancy and the risk of birth defects. N. Engl. J. Med. 343, 1608–1614 (2000). Reports that folate antagonists taken during pregnancy increase NTD risk.

    Article  CAS  PubMed  Google Scholar 

  22. Rothenberg, S. P. et al. Autoantibodies against folate receptors in women with a pregnancy complicated by a neural tube defect. N. Engl. J. Med. 350, 134–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Piedrahita, J. A. et al. Mice lacking the folic acid-binding protein are defective in early embryonic development. Nature Genet. 23, 228–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Finnell, R. H. et al. DNA methylation in Folbp1 knockout mice supplemented with folic acid during gestation. J. Nutrition 132 (Suppl. 8), S2457–S2461 (2002).

    Article  Google Scholar 

  25. Spiegelstein, O. et al. Folate-regulated changes in gene expression in the anterior neural tube of folate binding protein-1 (Folbp1)-deficient murine embryos. Neurochem. Res. 29, 1105–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Tang, L. S. & Finnell, R. H. Neural and orofacial defects in Folp1 knockout mice. Birth Defects Res. A Clin. Mol. Teratol. 67, 209–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Tang, L. S. et al. Role of Folbp1 in the regional regulation of apoptosis and cell proliferation in the developing neural tube and craniofacies. Am. J. Med. Genet. C Semin. Med. Genet. 135, 48–58 (2005).

    Article  Google Scholar 

  28. Yates, J. R. W. et al. Is disordered folate metabolism the basis for the genetic predisposition to neural tube defects? Clin. Genet. 31, 279–287 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Kirke, P. N., Molloy, A. M. & Daly, L. E. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q. J. Med. 86, 703–708 (1993).

    CAS  PubMed  Google Scholar 

  30. Van der Put, N. M. J. et al. Altered folate and vitamin B12 metabolism in families with spina bifida offspring. Q. J. Med. 90, 505–510 (1997).

    Article  CAS  Google Scholar 

  31. Gardiki-Kouidou, P. & Seller, M. J. Amniotic fluid folate vitamin B12 and transcobalamins in neural tube defects. Clin. Genet. 33, 441–448 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Weekes, E. W. et al. Nutrient levels in amniotic fluid from women with normal and neural tube defect pregnancies. Biol. Neonate 61, 226–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Economides, D. L. et al. Folate and vitamin B12 concentration in maternal and fetal blood, and amniotic fluid in second trimester pregnancies complicated by neural tube defects. Br. J. Obstet. Gynaecol. 99, 23–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Wild, J., Schorah, C. J., Sheldon, T. A. & Smithells, R. W. Investigation of factors influencing folate status in women who have had a neural tube-affected infant. Br. J. Obstet. Gynaecol. 100, 546–549 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Luckock, M. D. et al. The methylfolate axis in neural tube defects: in vitro characterization and clinical investigation. Biochem. Med. Metab. Biol. 52, 101–114 (1994).

    Article  Google Scholar 

  36. Institute of Medicine. Nutrition During Pregnancy 258–271 (National Academy, Washington DC, 1990).

  37. FDA. Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Fed. Reg. 61, 8781–8797 (1996).

  38. Centers for Disease Control and Prevention. Knowledge and use of folic acid by women of childbearing age — United States, 1995 and 1998. Morb. Mortal. Wkly Rep. 48, 325–327 (1999).

  39. Honein, M. A. et al. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA 285, 2981–2986 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Williams, L. J. et al. Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology 66, 33–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Canfield, M. A. et al. Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi-state population-based study. Birth Defects Res. A Clin. Mol. Teratol. 73, 679–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Stover, P. J. Physiology of folate and vitamin B12 in health and disease. Nutr. Rev. 62, S3–S12 (2004).

    Article  PubMed  Google Scholar 

  43. van der Put, N. M. J., van Straaten, H. W. M., Trijbels, J. M. F. & Blom, H. J. Folate, homocysteine and neural tube defects: an overview. Exp. Biol. Med. 226, 243–270 (2001).

    Article  CAS  Google Scholar 

  44. Castro, R., Rivera, I., Blom, H. J., Jakobs, C. & de Almeida, I. T. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J. Inherit. Metab. Dis. 29, 3–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Steegers-Theunissen, R. P. M. et al. Maternal hyperhomocysteinemia: a risk factor for neural tube defects. Metabolism 43, 1475–1480 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Homocysteine Lowering Trialists Collaboration. Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am. J. Clin. Nutr. 82, 806–812 (2005).

  47. Jee, S. H. et al. Major gene evidence after MTHFR-segregation analysis of serum homocysteine in families of patients undergoing coronary arteriography. Hum. Genet. 111, 128–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Den Heijer, M. et al. Homocysteine levels — before and after methionine loading — in 51 Dutch families. Eur. J. Hum. Genet. 13, 753–762 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Blom, H. J. Mutated 5,10-methylenetetrahydrofolate reductase and moderate hyperhomocysteinaemia. Eur. J. Pediatr. 157, S131–S134 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Blom, H. J. Genetic determinants of hyperhomocysteinaemia: the roles of cystathionine β-synthase and 5,10-methylenetetrahydrofolate reductase. Eur. J. Pediatr. 159, 208–212 (2000).

    Article  Google Scholar 

  51. Kang, S. S., Zhou, J., Wong, P. W., Kowalisyn, J. & Strokosch, G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am. J. Hum. Genet. 43, 414–421 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Engbersen, A. M. T. Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am. J. Hum. Genet. 56, 142–150 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Frosst, P. et al. Identification of a candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genet. 10, 111–113 (1995). Reports that the polymorphism 677C>T leads to production of thermolabile MTHFR, and consequently is the first genetic variant to influence plasma homocysteine concentration in the population at risk for vascular disease.

    Article  CAS  PubMed  Google Scholar 

  54. van der Put, N. M. J. et al. Mutated methylenetetrahydrofolate reductase as a risk-factor for spina bifida. Lancet 346, 1070–1071 (1995). First study on the link between the MTHFR 677C>T polymorphism and NTD risk.

    Article  CAS  PubMed  Google Scholar 

  55. Ueland, P. M. & Rozen, R. (eds) MTHFR Polymorphisms and Disease 125–143 (Landes Bioscience, Georgetown, Texas, 2005).

    Google Scholar 

  56. Kluijtmans, L. A. et al. Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101, 2483–2488 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Jacques, P. F. et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93, 7–9 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Guenther, B. D. et al. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nature Struct. Biol. 6, 359–365 (1999). Elegant basic study on the MTHFR protein showing that the 677C>T polymorphism results in FAD loss, and that addition of folate prevents this loss.

    Article  CAS  PubMed  Google Scholar 

  59. McNulty, H. et al. Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C->T polymorphism. Circulation 113, 74–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Boyles, A. L., Hammock, P. & Speer, M. C. Candidate gene analysis in human neural tube defects. Am. J. Med. Genet. C Semin. Med. Genet. 135, 9–23 (2005).

    Article  Google Scholar 

  61. Finnell, R. H., Gould, A. & Spiegelstein, O. Pathobiology and genetics of neural tube defects. Epilepsia 44, 14–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Mitchell, L. E. et al. Spina bifida. Lancet 364, 1885–1895 (2004).

    Article  PubMed  Google Scholar 

  63. Gellekink, H. M., Den Heijer, M., Heil, S. G. & Blom, H. J. Genetic determinants of plasma total homocysteine. Sem. Vasc. Med. 5, 98–109 (2005).

    Article  Google Scholar 

  64. Van der Linden, I. J. M., Afman, L. A., Heil, S. G. & Blom, H. J. Genetic variation in genes of folate metabolism and neural tube defect risk. Proc. Nutr. Soc. 65, 1–12 (2005).

    Google Scholar 

  65. Juriloff, D. M. & Harris, M. J. Mouse models for neural tube closure defects. Hum. Mol. Genet. 9, 993–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Cabrera, R. M., Hill, D. S., Etheredge, A. J. & Finnell, R. H. Investigations into the etiology of neural tube defects. Birth Defects Res. C Embryo Today 72, 330–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Copp, A. J. Neurulation in the cranial region — normal and abnormal. J. Anat. 207, 623–635 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Greene, N. & Copp, A. J. Mouse models of neural tube defects: investigating preventive mechanisms. Am. J. Med. Genet. C Semin. Med. Genet. 135, 31–41 (2005).

    Article  Google Scholar 

  69. Chen, Z. et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet. 10, 433–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Swanson, D. A. et al. Targeted disruption of the methionine synthase gene in mice. Mol. Cell. Biol. 21, 1058–1065 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Watanabe, M. et al. Mice deficient in cystathionine β-synthase: animal models for mild and severe homocyst(e)inemia. Proc. Natl Acad. Sci. USA 92, 1585–1589 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scriver, C. R. et al. (eds) The Metabolic and Molecular Bases of Inherited Disease 8th edn Vol. 2 2007–2056 (McGraw Hill, New York, 2001).

    Google Scholar 

  73. Scriver, C. R. et al. (eds) The Metabolic and Molecular Bases of Inherited Disease 8th edn Vol. 3 3897–3934 (McGraw Hill, New York, 2001).

    Google Scholar 

  74. Harris, M. J. & Juriloff, D. M. Maternal diet alters exencephaly frequency in SELH/Bc strain mouse embryos. Birth Defects Res. A Clin. Mol. Teratol. 73, 532–540 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. van Straaten, H. W. & Copp, A. J. Curly tail: a 50-year history of the mouse spina bifida model. J. Med. Genet. 31, 383–387 (1994).

    Article  Google Scholar 

  76. Bagley, P. J. & Selhub, J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc. Natl Acad. Sci. USA 95, 13217–13220 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith, D. E., Kok, R. M., Teerlink, T., Jakobs, C. & Smulders, Y. M. Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography–tandem mass spectrometry. Clin. Chem. Lab. Med. 44, 450–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Friso, S. et al. A common mutation in the 5,10-methyl-enetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl Acad. Sci. USA 9, 5606–5611 (2002).

    Article  CAS  Google Scholar 

  79. Castro, R. et al. 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C mutations are associated with DNA hypomethylation. J. Med. Genet. 41, 454–458 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferase Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Afman, L. A., Blom, H. J., van der Put, N. M. J. & van Straaten, H. W. M. Homocysteine interference in neurulation: a chick embryo model. Birth Defects Res. A Clin. Mol. Teratol. 67, 421–428 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Afman, L. A., Blom, H. J., Drittij, M. J., Brouns, M. R. & van Straaten, H. W. M. Inhibition of transmethylation disturbs neurulation in chick embryos. Brain Res. Dev. Brain Res. 158, 59–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Coelho, C. N. & Klein, N. W. Methionine and neural tube closure in cultured rat embryos: morphological and biochemical analyses. Teratology 42, 437–451 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Vanaerts, L. A. et al. Prevention of neural tube defects by and toxicity of L-homocysteine in cultured post-implantation rat embryos. Teratology 50, 348–360 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Bennett, G. D. et al. Failure of homocysteine to induce neural tube defects in a mouse model. Birth Defects Res. B Dev. Reprod. Toxicol. 77, 89–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Greene, N. D., Dunlevy, L. E. & Copp, A. J. Homocysteine is embryotoxic but does not cause neural tube defects in mouse embryos. Anat. Embryol. (Berl.) 206, 185–191 (2003).

    Article  CAS  Google Scholar 

  87. Robien, K. & Ulrich, C. M. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am. J. Epidemiol. 157, 571–582 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge I. van der Linden for her critical comments and valuable support. Our work is supported by grants from the Princess Beatrix Fund and the National Institutes of Health (National Institute of Neurological Disorders and Stroke).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk J. Blom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Meta-analysis of MTHFR 677 C>T as risk factor for neural tube defects in mothers and their offspring (PDF 433 kb)

Supplementary information S2 (movie)

Normal neurulation of chicken embryos. (WMV 2591 kb)

Embryos were cultured in a Petri dish at 39°C starting with somite stage of about four and developing until about somite stage nine. Digital images were recorded using a video camera.

Supplementary information S3 (movie)

Inhibition of neurulation by homocysteine. (WMV 2552 kb)

Shows how homocysteine administration hampers normal neurulation, as shown by the widening of the anterior neuropore. Also the closure of the rhombencephalic neuropore is reduced. Control experiments with the same concentrations of leucine and cysteine did not significantly affect neurulation (data not shown).

Related links

Related links

DATABASES

OMIM

Anencephaly

Spina bifida

Glossary

Anencephaly

A neural tube defect that occurs when there is a failure of neurulation, in which the neural folds do not fuse at the cranial end of the developing embryo. In these infants, most or all of the brain tissue is missing.

Spina bifida

A posterior neural tube defect that is caused by the failure of the neural tube to fuse at the caudal end. Infants with spina bifida can have an open lesion on their spine, where significant damage to the nerves and spinal cord has occurred, or the lesion can be closed.

Neural plate

Neural epithelial cells that form in the early embryo after neuronal induction and give rise to the nervous system.

Neural crest

Groups of cells that migrate from the neural tube to the periphery, where they give rise to a wide variety of cell types.

Biomarker

A characteristic that is objectively measured and evaluated as an indicator of normal biological or pathogenic processes, or pharmacological responses to a therapeutic intervention.

Single nucleotide polymorphism

(SNP). A specific location in a DNA sequence at which different people can have a different DNA base. Differences in a single base could change the protein sequence, leading to disease (for example, sickle-cell disease), or have no known consequences.

Somites

Paired blocks of mesoderm cells along the vertebrate body axis that form during early vertebrate development and differentiate into dermal skin, bone and muscle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blom, H., Shaw, G., den Heijer, M. et al. Neural tube defects and folate: case far from closed. Nat Rev Neurosci 7, 724–731 (2006). https://doi.org/10.1038/nrn1986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1986

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing