Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuronal subtype specification in the cerebral cortex

Key Points

  • The mammalian neocortex is an extremely complex, highly organized, six-layered structure that contains hundreds of different neuronal cell types. Within the neocortex, distinct populations of projection neurons are located in different cortical layers and areas, have unique morphological features, express different complements of transcription factors, and ultimately serve different functions.

  • Projection neurons are glutamatergic neurons characterized by a typical pyramidal morphology, and function to transmit information both between different regions of the cortex and to other regions of the brain. During development, they are generated from progenitors of the neocortical germinal zone, which includes the ventricular zone (VZ) and, as neurogenesis proceeds, an additional proliferative zone known as the subventricular zone (SVZ).

  • Different types of progenitors contribute to cortical neurogenesis. These include radial glial progenitors located in the VZ as well as progenitors undergoing division away from the ventricular surface, which have been termed 'intermediate progenitors'. The lineage relationship between different progenitors and the type of projection neuron progeny that they generate are largely not understood.

  • Upon induction of the telencephalon by gradients of extracellular signalling molecules, genes including empty spiracles homologue 2 (Emx2), paired box 6 (Pax6), LIM homeobox 2 (Lhx2) and forkhead box G1 (Foxg1) have crucial roles in specifying the progenitors that give rise to neocortical projection neurons. Together, these genes establish the neocortical progenitor domain by repressing dorsal midline (Lhx2 and Foxg1) and ventral (Emx2 and Pax6) fates.

  • Recently, tremendous advances have been made in the identification of laminar- and subtype-specific markers. In this review we provide a comprehensive list of laminar-specific genes with information regarding their expression domains.

  • For many of the layer-specific genes that have been identified, subtype specificity is starting to be defined, and some have been already described as being expressed in one specific neuronal type within a layer or across layers. It is not clear whether the same markers can be used to identify progenitors of each neuronal subtype, or whether such lineage-committed progenitors even exist.

  • Among the different types of cortical projection neuron, subcerebral projection neurons are an ideal model population for studying subtype-specific fate specification in the neocortex. The most well-studied subtype of subcerebral projection neuron is corticospinal motor neurons (CSMNs). During the last several years the identification of a large number of subcerebral- and CSMN-specific genes has activated and enabled an expanding effort to decipher the programmes controlling CSMN development.

  • Although a comprehensive understanding of the part played by additional subcerebral-specific genes still awaits substantial experimental work in vivo, on the basis of the data available thus far, a possible model for the generation of subcerebral projection neurons can be put forward that requires sequential steps of progressive differentiation.

  • Recent experimental data indicate that cortical progenitors might be more plastic than previously suspected, even late in neurogenesis, if manipulated by the appropriate control molecules.

Abstract

In recent years, tremendous progress has been made in understanding the mechanisms underlying the specification of projection neurons within the mammalian neocortex. New experimental approaches have made it possible to identify progenitors and study the lineage relationships of different neocortical projection neurons. An expanding set of genes with layer and neuronal subtype specificity have been identified within the neocortex, and their function during projection neuron development is starting to be elucidated. Here, we assess recent data regarding the nature of neocortical progenitors, review the roles of individual genes in projection neuron specification and discuss the implications for progenitor plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depicting how progenitors residing in the VZ and SVZ in mice produce projection neurons in an 'inside-out' fashion.
Figure 2: Emx2, Pax6, Lhx2 and Foxg1 have crucial roles in the specification of neocortical progenitors.
Figure 3: Laminar- and subtype-specific genes in the mouse neocortex.
Figure 4: Schematic representation of a potential model for the generation of projection neuron subtypes from progenitors.

Similar content being viewed by others

References

  1. Peters, A. & Jones, E. G. Cellular Components of the Cerebral Cortex (Plenum, New York, 1984).

    Google Scholar 

  2. Ramón y Cajal, S. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  3. Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, S. A., Kaznowski, C. E., Horn, C., Rubenstein, J. L. & McConnell, S. K. Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb. Cortex 12, 702–709 (2002).

    Article  PubMed  Google Scholar 

  5. Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. Tan, S. S. et al. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21, 295–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Ware, M. L., Tavazoie, S. F., Reid, C. B. & Walsh, C. A. Coexistence of widespread clones and large radial clones in early embryonic ferret cortex. Cereb. Cortex 9, 636–645 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nature Rev. Neurosci. 7, 687–696 (2006).

    Article  CAS  Google Scholar 

  10. Migliore, M. & Shepherd, G. M. An integrated approach to classifying neuronal phenotypes. Nature Rev. Neurosci. 6, 810–818 (2005).

    Article  CAS  Google Scholar 

  11. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Livesey, F. J. & Cepko, C. L. Vertebrate neural cell-fate determination: lessons from the retina. Nature Rev. Neurosci. 2, 109–118 (2001).

    Article  CAS  Google Scholar 

  13. Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nature Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  Google Scholar 

  14. Guillemot, F. Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr. Opin. Cell Biol. 17, 639–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Marin, O. & Rubenstein, J. L. Cell migration in the forebrain. Annu. Rev. Neurosci. 26, 441–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Embryonic vertebrate central nervous system: revised terminology. The Boulder Committee. Anat. Rec. 166, 257–261 (1970).

    Article  Google Scholar 

  17. Bayer, S. A. & Altman, J. (eds) in Neocortical Development 255 (Raven, New York, 1991).

    Google Scholar 

  18. Angevine, J. B. Jr & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in mouse. Nature 192, 766–768 (1961).

    Article  PubMed  Google Scholar 

  19. Caviness, V. S. Jr & Takahashi, T. Proliferative events in the cerebral ventricular zone. Brain Dev. 17, 159–163 (1995).

    Article  PubMed  Google Scholar 

  20. Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. Britanova, O. et al. A novel mode of tangential migration of cortical projection neurons. Dev. Biol. 298, 299–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Rakic, P. Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex 13, 541–549 (2003).

    Article  PubMed  Google Scholar 

  24. Reid, C. B. & Walsh, C. A. Evidence of common progenitors and patterns of dispersion in rat striatum and cerebral cortex. J. Neurosci. 22, 4002–4014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McConnell, S. K. & Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Frantz, G. D. & McConnell, S. K. Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17, 55–61 (1996). One paper from a series of experiments by McConnell and colleagues investigating the fate potential of neocortical progenitors at different stages of cortical neurogenesis. Here, the authors demonstrate that late progenitors are unable to generate deep-layer neurons when transplanted into the niche that normally generates deep-layer neurons.

    Article  CAS  PubMed  Google Scholar 

  27. Mizutani, K. & Saito, T. Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex. Development 132, 1295–1304 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Fukumitsu, H. et al. Brain-derived neurotrophic factor participates in determination of neuronal laminar fate in the developing mouse cerebral cortex. J. Neurosci. 26, 13218–13230 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005). Fezl was the first transcription factor found to be necessary for the generation of one neuronal population (subcerebral projection neurons) within the cortex.

    Article  CAS  PubMed  Google Scholar 

  30. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  CAS  Google Scholar 

  31. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Smart, I. H. Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J. Anat. 116, 67–91 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hartfuss, E., Galli, R., Heins, N. & Gotz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Anthony, T. E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nature Neurosci. 5, 308–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Mo, Z. et al. Human cortical neurons originate from radial glia and neuron-restricted progenitors. J. Neurosci. 27, 4132–4145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004). Using low-titre retroviral infection and in vitro time-lapse imaging, the authors demonstrate that radial glia give rise to neurons through two different mechanisms: either by an asymmetric cell division in the VZ that produces a neuron and a radial glia cell or through the generation of an intermediate progenitor that migrates into the SVZ before dividing symmetrically to produce two neurons.

    Article  CAS  PubMed  Google Scholar 

  40. Gal, J. S. et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J. Neurosci. 26, 1045–1056 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hinds, J. W. & Ruffett, T. L. Cell proliferation in the neural tube: an electron microscopic and golgi analysis in the mouse cerebral vesicle. Z. Zellforsch. Mikrosk. Anat. 115, 226–264 (1971).

    Article  CAS  PubMed  Google Scholar 

  42. Smart, I. H. & McSherry, G. M. Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J. Anat. 134, 415–442 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr . Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J. Neurosci. 15, 6058–6068 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Zimmer, C., Tiveron, M. C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex 14, 1408–1420 (2004).

    Article  PubMed  Google Scholar 

  49. Wu, S. X. et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl Acad. Sci. USA 102, 17172–17177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aboitiz, F., Morales, D. & Montiel, J. The evolutionary origin of the mammalian isocortex: towards an integrated developmental and functional approach. Behav. Brain Sci. 26, 535–552; discussion 552–585 (2003).

    Article  PubMed  Google Scholar 

  51. Marin-Padilla, M. Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J. Comp. Neurol. 321, 223–240 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Reiner, A. A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: implications for the evolution of isocortex. Brain Behav. Evol. 38, 53–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Rev. Neurosci. 7, 883–890 (2006).

    Article  CAS  Google Scholar 

  54. Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  PubMed  Google Scholar 

  55. Bohner, A. P., Akers, R. M. & McConnell, S. K. Induction of deep layer cortical neurons in vitro. Development 124, 915–923 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Hack, M. A., Sugimori, M., Lundberg, C., Nakafuku, M. & Gotz, M. Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol. Cell. Neurosci. 25, 664–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9, 743–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen, L., Besson, A., Roberts, J. M. & Guillemot, F. Coupling cell cycle exit, neuronal differentiation and migration in cortical neurogenesis. Cell Cycle 5, 2314–2318 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Rallu, M., Corbin, J. G. & Fishell, G. Parsing the prosencephalon. Nature Rev. Neurosci. 3, 943–951 (2002).

    Article  CAS  Google Scholar 

  60. Bulchand, S., Grove, E. A., Porter, F. D. & Tole, S. LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech. Dev. 100, 165–175 (2001). The authors report that Lhx2 is required for the formation of the neocortical progenitor domain, and find that the neocortex of Lhx2 -mutant mice is almost entirely replaced by an expanded cortical hem.

    Article  CAS  PubMed  Google Scholar 

  61. Monuki, E. S., Porter, F. D. & Walsh, C. A. Patterning of the dorsal telencephalon and cerebral cortex by a roof plate–lhx2 pathway. Neuron 32, 591–604 (2001). The authors find that Lhx2 expression is partly regulated by bone morphogenetic protein signalling from the roof plate at the dorsal midline. Like reference 60, this paper reports that Lhx2 is required for the formation of the neocortical progenitor domain and that the neocortex of Lhx2 -mutant mice is almost entirely replaced by an expanded cortical hem and choroid plexus.

    Article  CAS  PubMed  Google Scholar 

  62. Vyas, A., Saha, B., Lai, E. & Tole, S. Paleocortex is specified in mice in which dorsal telencephalic patterning is severely disrupted. J. Comp. Neurol. 466, 545–553 (2003).

    Article  PubMed  Google Scholar 

  63. Dou, C. L., Li, S. & Lai, E. Dual role of brain factor-1 in regulating growth and patterning of the cerebral hemispheres. Cereb. Cortex 9, 543–550 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Muzio, L. & Mallamaci, A. Foxg1 confines Cajal–Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J. Neurosci. 25, 4435–4441 (2005). The authors demonstrate that Foxg1 is required for the specification of neocortical progenitors. In its absence, the neocortex is replaced by an expanded cortical hem and an expanded archicortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hanashima, C., Li, S. C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004). The authors find that the absence of Foxg1 results in the generation of increased numbers of Cajal–Retzius cells instead of neocortical projection neurons. Remarkably, inactivation of Foxg1 midway through the generation of projection neurons results in the production of additional Cajal–Retzius cells.

    Article  CAS  PubMed  Google Scholar 

  66. Mallamaci, A. & Stoykova, A. Gene networks controlling early cerebral cortex arealization. Eur. J. Neurosci. 23, 847–856 (2006).

    Article  PubMed  Google Scholar 

  67. Muzio, L. et al. Conversion of cerebral cortex into basal ganglia in Emx2−/−/Pax6Sey/Sey double-mutant mice. Nature Neurosci. 5, 737–745 (2002). The authors find that without at least one allele of Emx2 or Pax6 , no neocortex is generated.

    Article  CAS  PubMed  Google Scholar 

  68. Schuurmans, C. et al. Sequential phases of cortical specification involve Neurogenin-dependent and independent pathways. EMBO J. 23, 2892–2902 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stoykova, A., Treichel, D., Hallonet, M. & Gruss, P. Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. J. Neurosci. 20, 8042–8050 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Toresson, H., Potter, S. S. & Campbell, K. Genetic control of dorsal–ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Yun, K., Potter, S. & Rubenstein, J. L. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Kroll, T. T. & O'Leary, D. D. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc. Natl Acad. Sci. USA 102, 7374–7379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quinn, J. C. et al. Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev. Biol. 302, 50–65 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Caric, D., Gooday, D., Hill, R. E., McConnell, S. K. & Price, D. J. Determination of the migratory capacity of embryonic cortical cells lacking the transcription factor Pax-6. Development 124, 5087–5096 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Land, P. W. & Monaghan, A. P. Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb. Cortex 13, 921–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Roy, K. et al. The Tlx gene regulates the timing of neurogenesis in the cortex. J. Neurosci. 24, 8333–8345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Estivill-Torrus, G., Pearson, H., van Heyningen, V., Price, D. J. & Rashbass, P. Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129, 455–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gray, P. A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Magdaleno, S. et al. BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 4, e86 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Visel, A., Thaller, C. & Eichele, G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 32, D552–D556 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, Q., Dwyer, N. D. & O'Leary, D. D. Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J. Neurosci. 20, 7682–7690 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhong, Y. et al. Identification of the genes that are expressed in the upper layers of the neocortex. Cereb. Cortex 14, 1144–1152 (2004).

    Article  PubMed  Google Scholar 

  86. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005). The first paper reporting on the identification of genes that are specific to corticospinal motor neurons and that in combination identify and control development of this neuron type in vivo.

    Article  CAS  PubMed  Google Scholar 

  87. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006). The authors define the global expression profile of 12 neuronal populations chosen from different regions of the adult forebrain and use the gene expression data to propose a taxonomic classification of neuron types on the basis of their molecular similarities.

    Article  CAS  PubMed  Google Scholar 

  88. Bulchand, S., Subramanian, L. & Tole, S. Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex. Dev. Dyn. 226, 460–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Nakagawa, Y., Johnson, J. E. & O'Leary, D. D. Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J. Neurosci. 19, 10877–10885 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McEvilly, R. J., de Diaz, M. O., Schonemann, M. D., Hooshmand, F. & Rosenfeld, M. G. Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295, 1528–1532 (2002). The authors show that Brn1 and Brn2 are necessary for proper cortical lamination, such that in the absence of both these genes neurons of upper layers II/III and layer V fail to migrate and position below the subplate, whereas layer VI neurons are unaffected, resulting in an inverted cortex.

    Article  CAS  PubMed  Google Scholar 

  91. Sugitani, Y. et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 16, 1760–1765 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schaeren-Wiemers, N., Andre, E., Kapfhammer, J. P. & Becker-Andre, M. The expression pattern of the orphan nuclear receptor RORβ in the developing and adult rat nervous system suggests a role in the processing of sensory information and in circadian rhythm. Eur. J. Neurosci. 9, 2687–2701 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Ferland, R. J., Cherry, T. J., Preware, P. O., Morrisey, E. E. & Walsh, C. A. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J. Comp. Neurol. 460, 266–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Frantz, G. D., Bohner, A. P., Akers, R. M. & McConnell, S. K. Regulation of the POU domain gene SCIP during cerebral cortical development. J. Neurosci. 14, 472–485 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weimann, J. M. et al. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24, 819–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Hevner, R. F. et al. Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev. Neurosci. 25, 139–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Voelker, C. C. et al. Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb. Cortex 14, 1276–1286 (2004).

    Article  PubMed  Google Scholar 

  98. Alvarez-Bolado, G., Rosenfeld, M. G. & Swanson, L. W. Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. J. Comp. Neurol. 355, 237–295 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Bulfone, A. et al. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Hevner, R. F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001). The authors report that the transcription factor Tbr1 is necessary for proper development of Cajal–Retzius cells, subplate neurons and layer VI neurons. In the absence of Tbr1 , the preplate does not split properly, deep-layer VI neurons are located below the subplate, with disruption of cortical lamination, as well as abnormal corticothalamic, thalamocortical and cortico-cortical connectivity.

    Article  CAS  PubMed  Google Scholar 

  101. Guillemot, F., Molnar, Z., Tarabykin, V. & Stoykova, A. Molecular mechanisms of cortical differentiation. Eur. J. Neurosci. 23, 857–868 (2006).

    Article  PubMed  Google Scholar 

  102. Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Takeuchi, A. & O'Leary, D. D. Radial migration of superficial layer cortical neurons controlled by novel Ig cell adhesion molecule MDGA1. J. Neurosci. 26, 4460–4464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Killackey, H. P., Koralek, K. A., Chiaia, N. L. & Rhodes, R. W. Laminar and areal differences in the origin of the subcortical projection neurons of the rat somatosensory cortex. J. Comp. Neurol. 282, 428–445 (1989).

    Article  CAS  PubMed  Google Scholar 

  105. Legg, C. R., Mercier, B. & Glickstein, M. Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J. Comp. Neurol. 286, 427–441 (1989).

    Article  CAS  PubMed  Google Scholar 

  106. Molnar, Z. & Cheung, A. F. Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci. Res. 55, 105–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. O'Leary, D. D. & Koester, S. E. Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10, 991–1006 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Wise, S. P. & Jones, E. G. Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J. Comp. Neurol. 175, 129–157 (1977).

    Article  CAS  PubMed  Google Scholar 

  109. O'Leary, D. D. & Terashima, T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and 'waiting periods'. Neuron 1, 901–910 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Schreyer, D. J. & Jones, E. G. Axon elimination in the developing corticospinal tract of the rat. Brain Res. 466, 103–119 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Chen, B., Schaevitz, L. R. & McConnell, S. K. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17184–17189 (2005). Similarly to reference 29, this reports that Fez2f regulates the differentiation of layer V neurons and their subcerebral projections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, J. G., Rasin, M. R., Kwan, K. Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17792–17797 (2005). The authors knocked down Fez2f expression in cortical neurons via small interfering RNA and showed that reduced levels of this transcription factor results in abnormal connectivity by layer V and VI neurons to subcortical targets and in abnormal neuronal subtype-specific dendritic differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Inoue, K., Terashima, T., Nishikawa, T. & Takumi, T. Fez1 is layer-specifically expressed in the adult mouse neocortex. Eur. J. Neurosci. 20, 2909–2916 (2004).

    Article  PubMed  Google Scholar 

  114. Hirata, T. et al. Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Dev. Dyn. 230, 546–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Frantz, G. D., Weimann, J. M., Levin, M. E. & McConnell, S. K. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J. Neurosci. 14, 5725–5740 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Harel, N. Y. & Strittmatter, S. M. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nature Rev. Neurosci. 7, 603–616 (2006).

    Article  CAS  Google Scholar 

  117. Liu, Y. et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nature Neurosci. 8, 1151–1159 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Ozdinler, P. H. & Macklis, J. D. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nature Neurosci. 9, 1371–1381 (2006).

    Article  PubMed  CAS  Google Scholar 

  119. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Pearson, B. J. & Doe, C. Q. Regulation of neuroblast competence in Drosophila. Nature 425, 624–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Chen, J., Magavi, S. S. & Macklis, J. D. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc. Natl Acad. Sci. USA 101, 16357–16362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Magavi, S. S., Leavitt, B. R. & Macklis, J. D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Butt, S. J. et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Lopez-Bendito, G. et al. Preferential origin and layer destination of GAD65–GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004).

    Article  PubMed  Google Scholar 

  125. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Meyer, G., Perez-Garcia, C. G., Abraham, H. & Caput, D. Expression of p73 and reelin in the developing human cortex. J. Neurosci. 22, 4973–4986 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Takiguchi-Hayashi, K. et al. Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24, 2286–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yoshida, M., Assimacopoulos, S., Jones, K. R. & Grove, E. A. Massive loss of Cajal–Retzius cells does not disrupt neocortical layer order. Development 133, 537–545 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Bielle, F. et al. Multiple origins of Cajal–Retzius cells at the borders of the developing pallium. Nature Neurosci. 8, 1002–1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. O'Leary, D. D. & Nakagawa, Y. Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr. Opin. Neurobiol. 12, 14–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Kimura, J. et al. Emx2 and Pax6 function in cooperation with Otx2 and Otx1 to develop caudal forebrain primordium that includes future archipallium. J. Neurosci. 25, 5097–5108 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Muzio, L. & Mallamaci, A. Emx1, Emx2 and Pax6 in specification, regionalization and arealization of the cerebral cortex. Cereb. Cortex 13, 641–647 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the National Institutes of Health (NS45523, NS49553, NS41590), the Harvard Stem Cell Institute, the Spastic Paraplegia Foundation and the ALS Association to J.D.M. P.A. was partially supported by a Claflin Distinguished Scholar Award, the Harvard Stem Cell Institute, the Spastic Paraplegia Foundation and a grant from the ALS Association. B.J.M. was supported by the Harvard M.S.T.P. and the United Sydney Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Macklis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Names and Entrez Gene ID numbers of the genes (PDF 174 kb)

Related links

Related links

FURTHER INFORMATION

Jeffrey Macklis's laboratory

Allen Brain Atlas

BGEM at St. Jude Children's Hospital

Functional Genomic Atlas of the Mouse Brain

Gene Paint

GENSAT

International Mouse Strain Resource (IMSR)

Glossary

Subcortical targets

Structures located ventral to the cortex, including the thalamus, brainstem and spinal cord.

Subcerebral targets

Structures located ventral to the cerebrum (telencephalon/diencephalon), including the brainstem and spinal cord.

Cajal–Retzius cells

Early-born neurons of cortical layer I that express reelin.

Competence state

The intrinsic molecular state of a cell that determines its differentiation potential.

Niche

Specific anatomical, cellular and molecular environment of a cell or population of cells.

Symmetric cell division

A mode of cell division that gives rise to two daughter cells of the same type.

Asymmetric cell division

A mode of cell division that gives rise to two different daughter cells.

Associative projection neurons

Neurons that extend axonal projections within a single cerebral hemisphere.

Commissural projection neurons

Neurons that extend axonal projections within the cortex to the opposite hemisphere via the corpus callosum or the anterior commissure.

Corticofugal projection neurons

Neurons that extend axonal projections 'away' from the cortex. These include subcerebral projection neurons and corticothalamic neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molyneaux, B., Arlotta, P., Menezes, J. et al. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8, 427–437 (2007). https://doi.org/10.1038/nrn2151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing