Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy

Key Points

  • Apolipoprotein E4 (APOE4) is the strongest risk factor for sporadic late-onset Alzheimer's disease (AD), which accounts for the vast majority of AD cases.

  • APOE4 differs from APOE2 and APOE3 at amino acid positions 112 and 158 and has a unique conformation that influences its lipid- and receptor-binding properties.

  • The cellular functions of APOE are mediated by APOE receptors, which are members of the low-density lipoprotein receptor (LDLR) family. LDLR-related protein 1 (LRP1) and the LDLRs are the two major types of APOE metabolic receptors in the brain.

  • APOE receptors regulate amyloid precursor protein (APP) trafficking and processing to amyloid-β (Aβ). Some of these functions are further modified by particular APOE isoforms.

  • APOE and APOE receptors have important roles in Aβ clearance both in the brain parenchyma and in the brain vasculature. APOE3 binds to Aβ more strongly than APOE4, and therefore it is more efficient at mediating Aβ clearance through APOE receptors.

  • APOE fragments generated from APOE4 influence tau phosphorylation and mitochondrial function. However, the mechanisms of these events are poorly understood.

  • The primary function of APOE is to transport lipids from astrocytes to neurons, an event that is crucial for synaptogenesis, synaptic repair, dendritic spine integrity and synaptic functions. APOE4 functions less efficiently than APOE3 in these processes.

  • APOE and APOE receptors are new targets for AD therapy. Several strategies have been reported or proposed.

Abstract

The vast majority of Alzheimer's disease (AD) cases are late-onset and their development is probably influenced by both genetic and environmental risk factors. A strong genetic risk factor for late-onset AD is the presence of the ɛ4 allele of the apolipoprotein E (APOE) gene, which encodes a protein with crucial roles in cholesterol metabolism. There is mounting evidence that APOE4 contributes to AD pathogenesis by modulating the metabolism and aggregation of amyloid-β peptide and by directly regulating brain lipid metabolism and synaptic functions through APOE receptors. Emerging knowledge of the contribution of APOE to the pathophysiology of AD presents new opportunities for AD therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of human APOE.
Figure 2: Apolipoprotein E receptors, members of the LDLR family.
Figure 3: APP processing pathways regulated by low-density lipoprotein receptor family members and APOE.
Figure 4: Major Aβ clearance pathways in the brain: role of APOE isoforms.
Figure 5: Synapse formation and repair depend on cholesterol transport from astrocytes to neurons by the APOE–APOE receptor pathway.
Figure 6: Roles of APOE isoforms in the healthy brain and AD pathogenesis.

Similar content being viewed by others

References

  1. Selkoe, D. J. Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J. Clin. Invest. 110, 1375–1381 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Blennow, K., de Leon, M. J. & Zetterberg, H. Alzheimer's disease. Lancet 368, 387–403 (2006).

    CAS  PubMed  Google Scholar 

  3. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  PubMed  Google Scholar 

  4. Selkoe, D. & Kopan, R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    CAS  PubMed  Google Scholar 

  5. Shen, J. & Kelleher, R. J. The presenilin hypothesis of Alzheimer's disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl Acad. Sci. USA 104, 403–409 (2007).

    CAS  PubMed  Google Scholar 

  6. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993). References 6 and 7 were the first to report a genetic association between the ɛ4 allele of the APOE gene and LOAD.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    CAS  PubMed  Google Scholar 

  8. Mahley, R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622–630 (1988). A classic review on the biochemical properties and cholesterol transport function of APOE.

    CAS  PubMed  Google Scholar 

  9. Bertram, L. & Tanzi, R. E. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature Rev. Neurosci. 9, 768–778 (2008). This paper provides a comprehensive review of the current state of AD genetics.

    CAS  Google Scholar 

  10. Blacker, D. et al. ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative. Neurology 48, 139–147 (1997).

    CAS  PubMed  Google Scholar 

  11. Burt, T. D. et al. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE ɛ4/ɛ4 genotype accelerates HIV disease progression. Proc. Natl Acad. Sci. USA 105, 8718–8723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenberg, S. M., Rebeck, G. W., Vonsattel, J. P., Gomez-Isla, T. & Hyman, B. T. Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann. Neurol. 38, 254–259 (1995).

    CAS  PubMed  Google Scholar 

  13. Josephs, K. A., Tsuboi, Y., Cookson, N., Watt, H. & Dickson, D. W. Apolipoprotein E ɛ4 is a determinant for Alzheimer-type pathologic features in tauopathies, synucleinopathies, and frontotemporal degeneration. Arch. Neurol. 61, 1579–1584 (2004).

    PubMed  Google Scholar 

  14. Martinez, M. et al. Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson's disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 136B, 172–174 (2005).

    Google Scholar 

  15. Masterman, T. & Hillert, J. The telltale scan: APOE ɛ4 in multiple sclerosis. Lancet Neurol. 3, 331 (2004).

    PubMed  Google Scholar 

  16. Herz, J. & Bock, H. H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 71, 405–434 (2002).

    CAS  PubMed  Google Scholar 

  17. Herz, J. & Chen, Y. Reelin, lipoprotein receptors and synaptic plasticity. Nature Rev. Neurosci. 7, 850–859 (2006).

    CAS  Google Scholar 

  18. Pitas, R. E., Boyles, J. K., Lee, S. H., Foss, D. & Mahley, R. W. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim. Biophys. Acta 917, 148–161 (1987).

    CAS  PubMed  Google Scholar 

  19. Uchihara, T. et al. ApoE immunoreactivity and microglial cells in Alzheimer's disease brain. Neurosci. Lett. 195, 5–8 (1995).

    CAS  PubMed  Google Scholar 

  20. Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D. & Weisgraber, K. H. Lipoproteins and their receptors in the central nervous system. J. Biol. Chem. 262, 14352–14360 (1987).

    CAS  PubMed  Google Scholar 

  21. LaDu, M. J. et al. Nascent astrocyte particles differ from lipoproteins in CSF. J. Neurochem. 70, 2070–2081 (1998).

    CAS  PubMed  Google Scholar 

  22. Hirsch-Reinshagen, V. et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J. Biol. Chem. 279, 41197–41207 (2004).

    CAS  PubMed  Google Scholar 

  23. Wahrle, S. E. et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J. Biol. Chem. 279, 40987–40993 (2004).

    CAS  PubMed  Google Scholar 

  24. Hatters, D. M., Peters-Libeu, C. A. & Weisgraber, K. H. Apolipoprotein E structure: insights into function. Trends Biochem. Sci. 31, 445–454 (2006). A comprehensive review of the biophysical and structural properties of the APOE isoforms.

    CAS  PubMed  Google Scholar 

  25. Zhong, N. & Weisgraber, K. H. Understanding the association of apolipoprotein E4 with Alzheimer's disease: clues from its structure. J. Biol. Chem. 284, 6027–6031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weisgraber, K. H., Rall, S. C. Jr & Mahley, R. W. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J. Biol. Chem. 256, 9077–9083 (1981).

    CAS  PubMed  Google Scholar 

  27. Ramaswamy, G., Xu, Q., Huang, Y. & Weisgraber, K. H. Effect of domain interaction on apolipoprotein E levels in mouse brain. J. Neurosci. 25, 10658–10663 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russell, D. W. & Schneider, W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1, 1–39 (1985).

    CAS  PubMed  Google Scholar 

  29. Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).

    CAS  PubMed  Google Scholar 

  30. Herz, J. et al. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 7, 4119–4127 (1988). This paper reported the initial cloning and structural properties of LRP1, a major APOE receptor in the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Herz, J., Kowal, R. C., Goldstein, J. L. & Brown, M. S. Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occurs in a trans-Golgi compartment. EMBO J. 9, 1769–1776 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y., Lu, W., Marzolo, M. P. & Bu, G. Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J. Biol. Chem. 276, 18000–18006 (2001).

    CAS  PubMed  Google Scholar 

  33. Herz, J., Clouthier, D. E. & Hammer, R. E. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 71, 411–421 (1992).

    CAS  PubMed  Google Scholar 

  34. May, P. et al. Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol. Cell. Biol. 24, 8872–8883 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Willnow, T. E., Nykjaer, A. & Herz, J. Lipoprotein receptors: new roles for ancient proteins. Nature Cell Biol. 1, E157–E162 (1999).

    CAS  PubMed  Google Scholar 

  36. Liu, C. X., Li, Y., Obermoeller-McCormick, L. M., Schwartz, A. L. & Bu, G. The putative tumor suppressor LRP1B, a novel member of the low density lipoprotein (LDL) receptor family, exhibits both overlapping and distinct properties with the LDL receptor-related protein. J. Biol. Chem. 276, 28889–28896 (2001).

    CAS  PubMed  Google Scholar 

  37. Li, Y. et al. Low density lipoprotein (LDL) receptor-related protein 1B impairs urokinase receptor regeneration on the cell surface and inhibits cell migration. J. Biol. Chem. 277, 42366–42371 (2002).

    CAS  PubMed  Google Scholar 

  38. Cam, J. A. et al. The low density lipoprotein receptor-related protein 1B retains β-amyloid precursor protein at the cell surface and reduces amyloid-β peptide production. J. Biol. Chem. 279, 29639–29646 (2004).

    CAS  PubMed  Google Scholar 

  39. Trommsdorff, M. et al. Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999). This paper described the role of APOER2 and VLDLR function in reelin signalling, which is crucial for neuronal migration during development.

    CAS  PubMed  Google Scholar 

  40. Johnson, E. B., Hammer, R. E. & Herz, J. Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum. Mol. Genet. 14, 3523–3538 (2005).

    CAS  PubMed  Google Scholar 

  41. Kim, N. et al. Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135, 334–342 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677 (2004).

    CAS  PubMed  Google Scholar 

  43. May, P. & Herz, J. LDL receptor-related proteins in neurodevelopment. Traffic 4, 291–301 (2003).

    CAS  PubMed  Google Scholar 

  44. Bu, G. Receptor-associated protein: a specialized chaperone and antagonist for members of the LDL receptor gene family. Curr. Opin. Lipidol. 9, 149–155 (1998).

    CAS  PubMed  Google Scholar 

  45. Bu, G. & Marzolo, M. P. Role of rap in the biogenesis of lipoprotein receptors. Trends Cardiovasc. Med. 10, 148–155 (2000).

    CAS  PubMed  Google Scholar 

  46. Fryer, J. D. et al. The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J. Biol. Chem. 280, 25754–25759 (2005).

    CAS  PubMed  Google Scholar 

  47. Liu, Q. et al. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 56, 66–78 (2007). This paper reported that APP and APOE are functionally linked in brain cholesterol metabolism through the APOE receptor LRP1.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zerbinatti, C. V. et al. Apolipoprotein E and low density lipoprotein receptor-related protein facilitate intraneuronal Aβ42 accumulation in amyloid model mice. J. Biol. Chem. 281, 36180–36186 (2006).

    CAS  PubMed  Google Scholar 

  49. Rebeck, G. W., Reiter, J. S., Strickland, D. K. & Hyman, B. T. Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 11, 575–580 (1993). This paper described the finding that both APOE and its receptor LRP1 are present in amyloid plaques.

    CAS  PubMed  Google Scholar 

  50. Rapp, A., Gmeiner, B. & Huttinger, M. Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 88, 473–483 (2006).

    CAS  PubMed  Google Scholar 

  51. Narita, M. et al. Cellular catabolism of lipid poor apolipoprotein E via cell surface LDL receptor-related protein. J. Biochem. 132, 743–749 (2002).

    CAS  PubMed  Google Scholar 

  52. Kowal, R. C. et al. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J. Biol. Chem. 265, 10771–10779 (1990).

    CAS  PubMed  Google Scholar 

  53. Fagan, A. M., Bu, G. J., Sun, Y. L., Daugherty, A. & Holtzman, D. M. Apolipoprotein E-containing high density lipoprotein promotes neurite outgrowth and is a ligand for the low density lipoprotein receptor-related protein. J. Biol. Chem. 271, 30121–30125 (1996).

    CAS  PubMed  Google Scholar 

  54. Niu, S., Yabut, O. & D'Arcangelo, G. The reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J. Neurosci. 28, 10339–10348 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Beffert, U. et al. Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci. 24, 1897–1906 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Beffert, U. et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47, 567–579 (2005).

    CAS  PubMed  Google Scholar 

  57. D'Arcangelo, G. et al. Reelin is a ligand for lipoprotein receptors. Neuron 24, 471–479 (1999).

    CAS  PubMed  Google Scholar 

  58. Hoe, H. S., Harris, D. C. & Rebeck, G. W. Multiple pathways of apolipoprotein E signaling in primary neurons. J. Neurochem. 93, 145–155 (2005).

    CAS  PubMed  Google Scholar 

  59. Qiu, Z., Crutcher, K. A., Hyman, B. T. & Rebeck, G. W. ApoE isoforms affect neuronal N-methyl-D-aspartate calcium responses and toxicity via receptor-mediated processes. Neuroscience 122, 291–303 (2003).

    CAS  PubMed  Google Scholar 

  60. Hayashi, H., Campenot, R. B., Vance, D. E. & Vance, J. E. Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J. Neurosci. 27, 1933–1941 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kounnas, M. Z. et al. LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation. Cell 82, 331–340 (1995). The first report to describe an interaction between APP and LRP1. Subsequent studies showed that LRP1 regulates APP trafficking and processing.

    CAS  PubMed  Google Scholar 

  62. Trommsdorff, R., Borg, J. P., Margolis, B. & Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33556–33560 (1998).

    CAS  PubMed  Google Scholar 

  63. Pietrzik, C. U. et al. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J. Neurosci. 24, 4259–4265 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kinoshita, A. et al. Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J. Neurosci. 21, 8354–8361 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ulery, P. G. et al. Modulation of β-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer's disease. J. Biol. Chem. 275, 7410–7415 (2000).

    CAS  PubMed  Google Scholar 

  66. Cam, J. A., Zerbinatti, C. V., Li, Y. & Bu, G. Rapid endocytosis of the low density lipoprotein receptor-related protein modulates cell surface distribution and processing of the β-amyloid precursor protein. J. Biol. Chem. 280, 15464–15470 (2005).

    CAS  PubMed  Google Scholar 

  67. Cole, S. L. & Vassar, R. The Alzheimer's disease β-secretase enzyme, BACE1. Mol. Neurodegener. 2, 22 (2007).

    PubMed  PubMed Central  Google Scholar 

  68. Zerbinatti, C. V. et al. Increased soluble amyloid-β peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein. Proc. Natl Acad. Sci. USA 101, 1075–1080 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ye, S. et al. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc. Natl Acad. Sci. USA 102, 18700–18705 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoe, H. S. et al. F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol. Cell. Biol. 25, 9259–9268 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Scherzer, C. R. et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch. Neurol. 61, 1200–1205 (2004).

    PubMed  Google Scholar 

  72. Andersen, O. M. et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl Acad. Sci. USA 102, 13461–13466 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet. 39, 168–177 (2007).

    CAS  PubMed  Google Scholar 

  74. Cirrito, J. R. et al. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J. Neurosci. 23, 8844–8853 (2003). This paper described an in vivo microdialysis technique to assess Aβ concentration in brain interstitial fluid. It also showed that Aβ's half-life in the mouse brain is 2–4 h.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bateman, R. J. et al. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nature Med. 12, 856–861 (2006).

    CAS  PubMed  Google Scholar 

  76. Deane, R. et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43, 333–344 (2004). This paper reported an important function of LRP1 in brain Aβ efflux through the BBB. It also demonstrated that Aβ binds directly to LRP1.

    CAS  PubMed  Google Scholar 

  77. Strittmatter, W. J. et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer's disease. Proc. Natl Acad. Sci. USA 90, 8098–8102 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tamamizu-Kato, S. et al. Interaction with amyloid β peptide compromises the lipid binding function of apolipoprotein E. Biochemistry 47, 5225–5234 (2008).

    CAS  PubMed  Google Scholar 

  79. Beffert, U. et al. β-amyloid peptides increase the binding and internalization of apolipoprotein E to hippocampal neurons. J. Neurochem. 70, 1458–1466 (1998).

    CAS  PubMed  Google Scholar 

  80. Hone, E. et al. Alzheimer's disease amyloid-β peptide modulates apolipoprotein E isoform specific receptor binding. J. Alzheimers Dis. 7, 303–314 (2005).

    CAS  PubMed  Google Scholar 

  81. LaDu, M. J. et al. Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23403–23406 (1994). This paper showed that APOE3–lipoprotein binds to Aβ with higher affinity than APOE4–lipoprotein.

    CAS  PubMed  Google Scholar 

  82. Holtzman, D. M. et al. Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer's disease. J. Clin. Invest. 103, R15–R21 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Holtzman, D. M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 97, 2892–2897 (2000). This paper described the differential in vivo effects of human APOE isoforms on amyloid deposition in mouse models.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. DeMattos, R. B. et al. ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41, 193–202 (2004).

    CAS  PubMed  Google Scholar 

  85. Schmechel, D. E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 9649–9653 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bogdanovic, N., Corder, E., Lannfelt, L. & Winblad, B. APOE polymorphism and clinical duration determine regional neuropathology in Swedish APP(670, 671) mutation carriers: implications for late-onset Alzheimer's disease. J. Cell. Mol. Med. 6, 199–214 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Small, G. W. et al. Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Arch. Gen. Psychiatry 66, 81–87 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Deane, R. et al. apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Van Uden, E. et al. Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J. Neurosci. 22, 9298–9304 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shibata, M. et al. Clearance of Alzheimer's amyloid-β1–40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489–1499 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L. & Laferla, F. M. Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45, 675–688 (2005).

    CAS  PubMed  Google Scholar 

  92. Koistinaho, M. et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nature Med. 10, 719–726 (2004). This paper showed that APOE that is secreted by astrocytes has a crucial role in degrading Aβ that is associated with amyloid plaques; this process depends on the function of APOE receptors.

    CAS  PubMed  Google Scholar 

  93. Khoury, J. E. & Luster, A. D. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol. Sci. 29, 626–632 (2008).

    PubMed  Google Scholar 

  94. McCarron, M. O. & Nicoll, J. A. R. Cerebral amyloid angiopathy and thrombolysis-related intracerebral haemorrhage. Lancet Neurol. 3, 484–492 (2004).

    PubMed  Google Scholar 

  95. Roher, A. E. et al. β-amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 10836–10840 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fryer, J. D. et al. Human apolipoprotein E4 alters the amyloid-β 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J. Neurosci. 25, 2803–2810 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Leissring, M. A. The ABCs of Aβ-cleaving proteases. J. Biol. Chem. 283, 29645–29649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tanzi, R. E., Moir, R. D. & Wagner, S. L. Clearance of Alzheimer's Aβ peptide: the many roads to perdition. Neuron 43, 605–608 (2004).

    CAS  PubMed  Google Scholar 

  99. Jiang, Q. et al. ApoE promotes the proteolytic degradation of Aβ. Neuron 58, 681–693 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dahlgren, K. N. et al. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053 (2002).

    CAS  PubMed  Google Scholar 

  101. Manelli, A. M., Bulfinch, L. C., Sullivan, P. M. & LaDu, M. J. Aβ42 neurotoxicity in primary co-cultures: effect of apoE isoform and Aβ conformation. Neurobiol. Aging 28, 1139–1147 (2007).

    CAS  PubMed  Google Scholar 

  102. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Med. 14, 837–842 (2008). References 102 and 103 demonstrated that Aβ oligomers isolated from the brain are highly neurotoxic.

    CAS  PubMed  Google Scholar 

  103. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    CAS  PubMed  Google Scholar 

  104. Belinson, H., Lev, D., Masliah, E. & Michaelson, D. M. Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J. Neurosci. 28, 4690–4701 (2008). This paper showed that APOE4 and Aβ synergistically activate neurotoxic pathways that lead to neurodegeneration and cognitive deficits in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Muller, T., Meyer, H. E., Egensperger, R. & Marcus, K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog. Neurobiol. 85, 393–406 (2008).

    PubMed  Google Scholar 

  106. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    CAS  PubMed  Google Scholar 

  107. Tesseur, I. et al. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am. J. Pathol. 156, 951–964 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Brecht, W. J. et al. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24, 2527–2534 (2004). This paper demonstrated that neuronal expression of APOE4 leads to increased tau phosphorylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aoki, K. et al. Increased expression of neuronal apolipoprotein E in human brain with cerebral infarction. Stroke 34, 875–880 (2003).

    CAS  PubMed  Google Scholar 

  110. Xu, Q. et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci. 26, 4985–4994 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chang, S. et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl Acad. Sci. USA 102, 18694–18699 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc. Natl Acad. Sci. USA 103, 5644–5651 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pfrieger, F. W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell. Mol. Life Sci. 60, 1158–1171 (2003).

    CAS  PubMed  Google Scholar 

  114. Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001). This paper showed that astrocyte-secreted cholesterol is essential for synaptogenesis.

    CAS  PubMed  Google Scholar 

  115. Shobab, L. A., Hsiung, G.-Y. R. & Feldman, H. H. Cholesterol in Alzheimer's disease. Lancet Neurol. 4, 841–852 (2005).

    CAS  PubMed  Google Scholar 

  116. Puglielli, L., Tanzi, R. E. & Kovacs, D. M. Alzheimer's disease: the cholesterol connection. Nature Neurosci. 6, 345–351 (2003).

    CAS  PubMed  Google Scholar 

  117. Kaether, C. & Haass, C. A lipid boundary separates APP and secretases and limits amyloid β-peptide generation. J. Cell Biol. 167, 809–812 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Reid, P. C., Urano, Y., Kodama, T. & Hamakubo, T. Alzheimer's disease: cholesterol, membrane rafts, isoprenoids and statins. J. Cell. Mol. Med. 11, 383–392 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Marzolo, M. P. & Bu, G. Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease. Semin. Cell Dev. Biol. 17 Oct 2008 (doi: 10.1016/j.semcdb.2008.10.005).

    CAS  Google Scholar 

  120. Thinakaran, G. & Koo, E. H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615–29619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ledesma, M. D. et al. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep. 4, 1190–1196 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ledesma, M. D. & Dotti, C. G. Amyloid excess in Alzheimer's disease: what is cholesterol to be blamed for? FEBS Lett. 580, 5525–5532 (2006).

    CAS  PubMed  Google Scholar 

  123. Hamanaka, H. et al. Altered cholesterol metabolism in human apolipoprotein E4 knock-in mice. Hum. Mol. Genet. 9, 353–361 (2000).

    CAS  PubMed  Google Scholar 

  124. Michikawa, M., Fan, Q. W., Isobe, I. & Yanagisawa, K. Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J. Neurochem. 74, 1008–1016 (2000).

    CAS  PubMed  Google Scholar 

  125. Gong, J. S. et al. Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J. Biol. Chem. 277, 29919–29926 (2002).

    CAS  PubMed  Google Scholar 

  126. Han, X. Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer's disease: a tale of shotgun lipidomics. J. Neurochem. 103, 171–179 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    CAS  PubMed  Google Scholar 

  128. Wang, C. et al. Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol. Dis. 18, 390–398 (2005).

    CAS  PubMed  Google Scholar 

  129. Trommer, B. L. et al. ApoE isoform affects LTP in human targeted replacement mice. Neuroreport 15, 2655–2658 (2004).

    CAS  PubMed  Google Scholar 

  130. Hayashi, T. et al. Different expression of low density lipoprotein receptor and ApoE between young adult and old rat brains after ischemia. Neurol. Res. 28, 822–825 (2006).

    CAS  PubMed  Google Scholar 

  131. Holtzman, D. M. et al. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc. Natl Acad. Sci. USA 92, 9480–9484 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nathan, B. P. et al. Differential effects of apolipoprotein E3 and E4 on neuronal growth in vitro. Science 264, 850–852 (1994). References 131 and 132 described the differential effects of APOE isoforms in promoting neurite outgrowth.

    CAS  PubMed  Google Scholar 

  133. Ji, Y. et al. Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuroscience 122, 305–315 (2003).

    CAS  PubMed  Google Scholar 

  134. Lanz, T. A., Carter, D. B. & Merchant, K. M. Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol. Dis. 13, 246–253 (2003).

    CAS  PubMed  Google Scholar 

  135. Brodbeck, J. et al. Rosiglitazone increases dendritic spine density and rescues spine loss caused by apolipoprotein E4 in primary cortical neurons. Proc. Natl Acad. Sci. USA 105, 1343–1346 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Laws, S. M., Hone, E., Gandy, S. & Martins, R. N. Expanding the association between the APOE gene and the risk of Alzheimer's disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J. Neurochem. 84, 1215–1236 (2003).

    CAS  PubMed  Google Scholar 

  137. Riddell, D. R. et al. Impact of apolipoprotein E (apoE) polymorphism on brain apoE levels. J. Neurosci. 28, 11445–11453 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Vaya, J. & Schipper, H. M. Oxysterols, cholesterol homeostasis, and Alzheimer disease. J. Neurochem. 102, 1727–1737 (2007).

    CAS  PubMed  Google Scholar 

  139. Riddell, D. R. et al. The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol. Cell. Neurosci. 34, 621–628 (2007).

    CAS  PubMed  Google Scholar 

  140. Laskowitz, D. T. & Vitek, M. P. Apolipoprotein E and neurological disease: therapeutic potential and pharmacogenomic interactions. Pharmacogenomics 8, 959–969 (2007).

    CAS  PubMed  Google Scholar 

  141. Aono, M. et al. Protective effect of apolipoprotein E-mimetic peptides on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cell cultures. Neuroscience 116, 437–445 (2003).

    CAS  PubMed  Google Scholar 

  142. Laskowitz, D. T., Fillit, H., Yeung, N., Toku, K. & Vitek, M. P. Apolipoprotein E-derived peptides reduce CNS inflammation: implications for therapy of neurological disease. Acta Neurol. Scand. Suppl. 185, 15–20 (2006).

    CAS  PubMed  Google Scholar 

  143. Bales, K. R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nature Genet. 17, 263–264 (1997).

    CAS  PubMed  Google Scholar 

  144. Sadowski, M. J. et al. Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer's disease. Proc. Natl Acad. Sci. USA 103, 18787–18792 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kang, D. E. et al. Modulation of amyloid β-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway. J. Clin. Invest. 106, 1159–1166 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Grimsley, P. G., Quinn, K. A. & Owensby, D. A. Soluble low-density lipoprotein receptor-related protein. Trends Cardiovasc. Med. 8, 363–368 (1998).

    CAS  PubMed  Google Scholar 

  147. Quinn, K. A., Pye, V. J., Dai, Y. P., Chesterman, C. N. & Owensby, D. A. Characterization of the soluble form of the low density lipoprotein receptor-related protein (LRP). Exp. Cell Res. 251, 433–441 (1999).

    CAS  PubMed  Google Scholar 

  148. Sagare, A. et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nature Med. 13, 1029–1031 (2007).

    CAS  PubMed  Google Scholar 

  149. von Arnim, C. A. et al. The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J. Biol. Chem. 280, 17777–17785 (2005).

    CAS  PubMed  Google Scholar 

  150. May, P., Bock, H. H., Nimpf, J. & Herz, J. Differential glycosylation regulates processing of lipoprotein receptors by γ-secretase. J. Biol. Chem. 278, 37386–37392 (2003).

    CAS  PubMed  Google Scholar 

  151. Kinoshita, A., Shah, T., Tangredi, M. M., Strickland, D. K. & Hyman, B. T. The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J. Biol. Chem. 278, 41182–41188 (2003).

    CAS  PubMed  Google Scholar 

  152. Zurhove, K., Nakajima, C., Herz, J., Bock, H. H. & May, P. γ-Secretase limits the inflammatory response through the processing of LRP1. Sci. Signal. 1, ra15 (2008).

    PubMed  PubMed Central  Google Scholar 

  153. Hoe, H. S. & Rebeck, G. W. Regulated proteolysis of APP and ApoE receptors. Mol. Neurobiol. 37, 64–72 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank P. Tarr, D. Owyoung and members of the Bu laboratory for critical reading and comments on this Review. He apologizes to those whose work is not cited owing to either space limitations or the specific focus of the Review. Work in the author's laboratory is supported by the US National Institutes of Health (grants R01AG027924 and R01AG031784) and a Zenith Fellows Award from the Alzheimer's Association.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (table)

Ligands and functions of LDLR family members (PDF 170 kb)

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

dementia with Lewy bodies

Parkinson's disease

FURTHER INFORMATION

Guojun Bu's homepage

AlzGene website

Glossary

Polymorphic allele

A natural variant in a gene that occurs with fairly high frequency (> 1%) in the general population.

Cerebral amyloid angiopathy

(CAA). A neurological condition in which amyloid protein is deposited onto the walls of the arteries of the brain. CAA increases the risk of bleeding into the brain, which causes haemorrhagic stroke.

Molten globule

A partially folded protein state that is found in mildly denaturing conditions, such as low pH, the presence of a mild denaturant or high temperature. It is also used to refer to certain protein folding intermediates.

PDAPP amyloid mouse model

A mouse model of AD in which a human APP transgene bearing the amyloidogenic V717F mutation is overexpressed under the control of the human platelet-derived growth factor-β chain gene promoter.

Endopeptidase

An enzyme that catalyses the hydrolysis of peptide bonds in the interior of a polypeptide chain or protein molecule.

PDGF-APPSw,Ind amyloid mouse model

A mouse model of AD in which a human APP transgene bearing the amyloidogenic V717F, K670N and M671L mutations is overexpressed under the control of the human platelet-derived growth factor-β chain gene promoter.

Tg2576 amyloid mouse model

A mouse model of AD in which a human APP transgene bearing the amyloidogenic K670N and M671L mutations is overexpressed under the control of the hamster prion protein gene promoter.

Protein prenylation and isoprenylation

The covalent attachment of hydrophobic prenyl or isoprenyl groups to a protein. These processes have roles in protein attachment to cell membranes and protein–protein interactions.

ApoE4 targeted replacement (TR) mouse

A model of human APOE4 expression in which the human APOEε4 gene is inserted into the mouse Apoe gene locus. The expression of human APOE4 in these mice temporally and spatially resembles that of endogenous mouse APOE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10, 333–344 (2009). https://doi.org/10.1038/nrn2620

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing