Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural regulation of endocrine and autonomic stress responses

Key Points

  • The response of mammals to external or internal challenge involves engagement of multiple physiological systems, prominently including the hypothalamic-pituitary-adrenocortical (HPA) axis and the autonomic nervous system (ANS).

  • Autonomic and HPA axis responses to systemic stressors are initiated by brainstem and hypothalamic structures that receive direct and indirect homeostatic feedback.

  • Psychological stress responses are activated and inhibited by limbic system structures, such as the medial prefrontal cortex, the hippocampus and the amygdala, which send multisynaptic input to brainstem and hypothalamic activators of the HPA axis and the ANS.

  • 'Psychological' information and homeostatic information are integrated by telencephalic and diencephalic relays prior to the elaboration of HPA axis or ANS responses.

  • HPA axis and ANS components of the stress response are probably encoded in distinct yet highly interconnected limbic subregions.

  • Chronic stress induces neuroplasticity in central stress-processing networks, causing sensitization as well as habituation of HPA axis and ANS responses.

  • Limbic stress response networks overlap extensively with memory and reward circuitry, allowing stress responses to be coloured by prior experience and expected outcomes.

Abstract

The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges. The re-establishment and maintenance of homeostasis entails the coordinated activation and control of neuroendocrine and autonomic stress systems. These collective stress responses are mediated by largely overlapping circuits in the limbic forebrain, the hypothalamus and the brainstem, so that the respective contributions of the neuroendocrine and autonomic systems are tuned in accordance with stressor modality and intensity. Limbic regions that are responsible for regulating stress responses intersect with circuits that are responsible for memory and reward, providing a means to tailor the stress response with respect to prior experience and anticipated outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General scheme of brain acute-stress regulatory pathways.
Figure 2: The brain circuitry that regulates autonomic stress responses.
Figure 3: The brain circuitry that regulates HPA axis stress responses.
Figure 4: Organization of limbic outputs.

Similar content being viewed by others

References

  1. Iversen, S., Iversen, L. & Saper, C. B. in Principles of Neural Science (eds Kandel, E. R., Schwartz, J. H. & Jessell, T. M.) (McGraw-Hill, New York, 2000).

    Google Scholar 

  2. Droste, S. K. et al. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 149, 3244–3253 (2008).

    CAS  PubMed  Google Scholar 

  3. Herman, J. P. et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrinol. 24, 151–180 (2003).

    CAS  PubMed  Google Scholar 

  4. Cunningham, E. T. Jr, Bohn, M. C. & Sawchenko, P. E. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J. Comp. Neurol. 292, 651–667 (1990).

    PubMed  Google Scholar 

  5. Cunningham, E. T. Jr & Sawchenko, P. E. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J. Comp. Neurol. 274, 60–76 (1988).

    PubMed  Google Scholar 

  6. Plotsky, P. M., Cunningham, E. T. Jr & Widmaier, E. P. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr. Rev. 10, 437–458 (1989). An excellent review of a large body of work on catecholaminergic regulation of the HPA axis.

    CAS  PubMed  Google Scholar 

  7. Hokfelt, T. et al. Coexistence of peptides with classical transmitters. Experientia 43, 768–780 (1987).

    CAS  PubMed  Google Scholar 

  8. Larsen, P. J., Tang-Christensen, M., Holst, J. J. & Orskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77, 257–270 (1997).

    CAS  PubMed  Google Scholar 

  9. Sawchenko, P. E., Arias, C. & Bittencourt, J. C. Inhibin beta, somatostatin and enkephalin immunoreactivities coexist in caudal medullary neurons that project to the paraventricular nucleus of the hypothalamus. J. Comp. Neurol. 291, 269–280 (1990).

    CAS  PubMed  Google Scholar 

  10. Buller, K., Xu, Y., Dayas, C. & Day, T. Dorsal and ventral medullary catecholamine cell groups contribute differentially to systemic interleukin-1β-induced hypothalamic pituitary adrenal axis responses. Neuroendocrinology 73, 129–138 (2001).

    CAS  PubMed  Google Scholar 

  11. Ritter, S., Watts, A. G., Dinh, T. T., Sanchez-Watts, G. & Pedrow, C. Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology 144, 1357–1367 (2003). Used a selective lesion method to establish clear differences in the role of the nucleus of the solitary tract noradrenaline and adrenaline pathways in the regulation of homeostatic versus psychological stressors.

    CAS  PubMed  Google Scholar 

  12. Kinzig, K. P. et al. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J. Neurosci. 23, 6163–6170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowry, C. A. Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J. Neuroendocrinol. 14, 911–923 (2002).

    CAS  PubMed  Google Scholar 

  14. Zhang, Y. et al. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (–) DOI. J. Neurosci. 22, 9635–9642 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sawchenko, P. E., Swanson, L. W., Steinbusch, H. W. & Verhofstad, A. A. The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res. 277, 355–360 (1983).

    CAS  PubMed  Google Scholar 

  16. Krause, E. G. et al. Angiotensin type 1 receptors in the subfornical organ mediate the drinking and hypothalamic-pituitary-adrenal response to systemic isoproterenol. Endocrinology 149, 6416–6424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Plotsky, P. M., Sutton, S. W., Bruhn, T. O. & Ferguson, A. V. Analysis of the role of angiotensin II in mediation of adrenocorticotropin secretion. Endocrinology 122, 538–545 (1988).

    CAS  PubMed  Google Scholar 

  18. Swanson, L. W. & Lind, R. W. Neural projections subserving the initiation of a specific motivated behavior in the rat: new projections from the subfornical organ. Brain Res. 379, 399–403 (1986).

    CAS  PubMed  Google Scholar 

  19. Johnson, A. K., Cunningham, J. T. & Thunhorst, R. L. Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis. Clin. Exp. Pharmacol. Physiol. 23, 183–191 (1996).

    CAS  PubMed  Google Scholar 

  20. Swanson, L. W. & Kuypers, H. G. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194, 555–570 (1980).

    CAS  PubMed  Google Scholar 

  21. Kreier, F. et al. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 147, 1140–1147 (2006).

    CAS  PubMed  Google Scholar 

  22. Decavel, C. & Van Den Pol, A. N. GABA: a dominant neurotransmitter in the hypothalamus. J. Comp. Neurol. 302, 1019–1037 (1990).

    CAS  PubMed  Google Scholar 

  23. Cole, R. L. & Sawchenko, P. E. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J. Neurosci. 22, 959–969 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, J. B., Skalska, S., Son, S. & Stern, J. E. Dual GABAA receptor-mediated inhibition in rat presympathetic paraventricular nucleus neurons. J. Physiol. 582, 539–551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Roland, B. L. & Sawchenko, P. E. Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus of the rat. J. Comp. Neurol. 332, 123–143 (1993).

    CAS  PubMed  Google Scholar 

  26. Herman, J. P., Cullinan, W. E., Ziegler, D. R. & Tasker, J. G. Role of the paraventricular nucleus microenvironment in stress integration. Eur. J. Neurosci. 16, 381–385 (2002).

    PubMed  Google Scholar 

  27. Bailey, T. W. & Dimicco, J. A. Chemical stimulation of the dorsomedial hypothalamus elevates plasma ACTH in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R8–R15 (2001).

    CAS  PubMed  Google Scholar 

  28. Stotz-Potter, E. H., Willis, L. R. & DiMicco, J. A. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J. Neurosci. 16, 1173–1179 (1996). One of several excellent papers from the DiMicco laboratory demonstrating the importance of the DMH in stress regulation. This study used a microinjection strategy to prove the primacy of the DMH in regulating cardiovascular stress responses. See other papers from this group for more information.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Curran, T. et al. Inducible proto-oncogene transcription factors: third messengers in the brain? Cold Spring Harb. Symp. Quant. Biol. 55, 225–234 (1990).

    CAS  PubMed  Google Scholar 

  30. DiMicco, J. A., Samuels, B. C., Zaretskaia, M. V. & Zaretsky, D. V. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol. Biochem. Behav. 71, 469–480 (2002).

    CAS  PubMed  Google Scholar 

  31. Cullinan, W. E., Helmreich, D. L. & Watson, S. J. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J. Comp. Neurol. 368, 88–99 (1996).

    CAS  PubMed  Google Scholar 

  32. Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375 (1992).

    CAS  PubMed  Google Scholar 

  33. Sawchenko, P. E. et al. The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog. Brain Res. 107, 201–222 (1996).

    CAS  PubMed  Google Scholar 

  34. Sawchenko, P. E., Li, H. Y. & Ericsson, A. Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog. Brain Res. 122, 61–78 (2000). A review that highlights groundbreaking work from the Sawchenko laboratory, summarizing studies that demonstrate stressor specificity in central neurocircuit activation.

    CAS  PubMed  Google Scholar 

  35. Xu, Y., Day, T. A. & Buller, K. M. The central amygdala modulates hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1β administration. Neuroscience 94, 175–183 (1999).

    CAS  PubMed  Google Scholar 

  36. Dayas, C. V., Buller, K. M. & Day, T. A. Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. Eur. J. Neurosci. 11, 2312–2322 (1999).

    CAS  PubMed  Google Scholar 

  37. Prewitt, C. M. & Herman, J. P. Hypothalamo-pituitary-adrenocortical regulation following lesions of the central nucleus of the amygdala. Stress 1, 263–280 (1997).

    CAS  PubMed  Google Scholar 

  38. Roozendaal, B., Koolhaas, J. M. & Bohus, B. Differential effect of lesioning of the central amygdala on the bradycardiac and behavioral response of the rat in relation to conditioned social and solitary stress. Behav. Brain Res. 41, 39–48 (1990).

    CAS  PubMed  Google Scholar 

  39. Roozendaal, B., Koolhaas, J. M. & Bohus, B. Central amygdala lesions affect behavioral and autonomic balance during stress in rats. Physiol. Behav. 50, 777–781 (1991).

    CAS  PubMed  Google Scholar 

  40. Cullinan, W. E., Herman, J. P., Battaglia, D. F., Akil, H. & Watson, S. J. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64, 477–505 (1995).

    CAS  PubMed  Google Scholar 

  41. Dayas, C. V., Buller, K. M., Crane, J. W., Xu, Y. & Day, T. A. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur. J. Neurosci. 14, 1143–1152 (2001). A key paper from the Day laboratory, demonstrating that lesions of the MeA but not the CeA block ACTH responses and PVN activation by psychogenic stress.

    CAS  PubMed  Google Scholar 

  42. Bhatnagar, S., Vining, C. & Denski, K. Regulation of chronic stress-induced changes in hypothalamic-pituitary-adrenal activity by the basolateral amygdala. Ann. NY Acad. Sci. 1032, 315–319 (2004).

    CAS  PubMed  Google Scholar 

  43. Prewitt, C. M. & Herman, J. P. Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: a dual tract-tracing analysis. J. Chem. Neuroanat. 15, 173–185 (1998).

    CAS  PubMed  Google Scholar 

  44. Jacobson, L. & Sapolsky, R. M. The role of the hippocampus in feedback regulation of the hypothalamo-pituitary-adrenocortical axis. Endocr. Rev. 12, 118–134 (1991).

    CAS  PubMed  Google Scholar 

  45. Rubin, R. T., Mandell, A. J. & Crandall, P. H. Corticosteroid responses to limbic stimulation in man: localization of stimulation sites. Science 153, 1212–1215 (1966).

    Google Scholar 

  46. Dunn, J. D. & Orr, S. E. Differential plasma corticosterone responses to hippocampal stimulation. Exp. Brain Res. 54, 1–6 (1984).

    CAS  PubMed  Google Scholar 

  47. Herman, J. P. & Mueller, N. K. Role of the ventral subiculum in stress integration. Behav. Brain Res. 174, 215–224 (2006).

    CAS  PubMed  Google Scholar 

  48. Ruit, K. G. & Neafsey, E. J. Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats. Brain Res. 457, 310–321 (1988).

    CAS  PubMed  Google Scholar 

  49. Ruit, K. G. & Neafsey, E. J. Hippocampal input to a “visceral motor” corticobulbar pathway: an anatomical and electrophysiological study in the rat. Exp. Brain Res. 82, 606–616 (1990).

    CAS  PubMed  Google Scholar 

  50. Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M. & Herman, J. P. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur. J. Neurosci. 18, 2357–2364 (2003).

    PubMed  Google Scholar 

  51. Diorio, D., Viau, V. & Meaney, M. J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamo-pituitary-adrenal responses to stress. J. Neurosci. 13, 3839–3847 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Radley, J. J., Arias, C. M. & Sawchenko, P. E. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J. Neurosci. 26, 12967–12976 (2006). The most recent paper on the role of the medial prefrontal cortex in stress regulation, showing differential actions of the dorsal and the ventromedial prefrontal cortex in HPA axis inhibition and activation of PVN preautonomic neurons, respectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerrits, M. et al. Increased stress vulnerability after a prefrontal cortex lesion in female rats. Brain Res. Bull. 61, 627–635 (2003).

    PubMed  Google Scholar 

  54. Akana, S. F., Chu, A., Soriano, L. & Dallman, M. F. Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots. J. Neuroendocrinol. 13, 625–637 (2001).

    CAS  PubMed  Google Scholar 

  55. Sullivan, R. M. & Gratton, A. Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res. 927, 69–79 (2002).

    CAS  PubMed  Google Scholar 

  56. Frysztak, R. J. & Neafsey, E. J. The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat. Brain Res. 643, 181–193 (1994).

    CAS  PubMed  Google Scholar 

  57. Resstel, L. B., Joca, S. R., Guimaraes, F. G. & Correa, F. M. Involvement of medial prefrontal cortex neurons in behavioral and cardiovascular responses to contextual fear conditioning. Neuroscience 143, 377–385 (2006).

    CAS  PubMed  Google Scholar 

  58. Resstel, L. B., Fernandes, K. B. & Correa, F. M. Medial prefrontal cortex modulation of the baroreflex parasympathetic component in the rat. Brain Res. 1015, 136–144 (2004).

    CAS  PubMed  Google Scholar 

  59. Dobrakovova, M., Kvetnansky, R., Torda, T. & Murgas, K. Changes of plasma and adrenal catecholamines and corticosterone in stressed rats with septal lesions. Physiol. Behav. 29, 41–45 (1982).

    CAS  PubMed  Google Scholar 

  60. Suarez, M., Maglianesi, M. A. & Perassi, N. I. Involvement of the anterodorsal thalami nuclei on the hypophysoadrenal response to chronic stress in rats. Physiol. Behav. 64, 111–116 (1998).

    CAS  PubMed  Google Scholar 

  61. Han, F., Ozawa, H., Matsuda, K., Nishi, M. & Kawata, M. Colocalization of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus and hypothalamus. Neurosci. Res. 51, 371–381 (2005).

    CAS  PubMed  Google Scholar 

  62. De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. & Joels, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19, 269–301 (1998).

    CAS  PubMed  Google Scholar 

  63. Boyle, M. P. et al. Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc. Natl Acad. Sci. USA 102, 473–478 (2005). Used a region-specific knockout mouse to indicate the requirement of the hippocampal and cortical GR in normal stress termination and glucocorticoid negative feedback.

    CAS  PubMed  Google Scholar 

  64. Furay, A. R., Bruestle, A. E. & Herman, J. P. The role of the forebrain glucocorticoid receptor in acute and chronic stress. Endocrinology 149, 5482–5490 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wei, Q. et al. Overexpressing the glucocorticoid receptor in forebrain causes an aging-like neuroendocrine phenotype and mild cognitive dysfunction. J. Neurosci. 27, 8836–8844 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei, Q. et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc. Natl Acad. Sci. USA 101, 11851–11856 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Berger, S. et al. Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proc. Natl Acad. Sci. USA 103, 195–200 (2006).

    CAS  PubMed  Google Scholar 

  68. Rozeboom, A. M., Akil, H. & Seasholtz, A. F. Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice. Proc. Natl Acad. Sci. USA 104, 4688–4693 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998).

    CAS  PubMed  Google Scholar 

  70. Schwaber, J. S., Kapp, B. S., Higgins, G. A. & Rapp, P. R. Amygdala and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. J. Neurosci. 2, 1424–1438 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen, C. R. & Bloom, F. E. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol. 224, 1–24 (1984).

    CAS  PubMed  Google Scholar 

  72. Choi, D. C. et al. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J. Neurosci. 27, 2025–2034 (2007). A paper from our group demonstrating selective involvement of distinct BST cell populations in activation and inhibition of HPA axis stress responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gray, T. S. et al. Ibotenic acid lesions in the bed nucleus of the stria terminalis attenuate conditioned stress-induced increases in prolactin, ACTH and corticosterone. Neuroendocrinology 57, 517–524 (1993).

    CAS  PubMed  Google Scholar 

  74. Dong, H. W., Petrovich, G. D., Watts, A. G. & Swanson, L. W. Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J. Comp. Neurol. 436, 430–455 (2001).

    CAS  PubMed  Google Scholar 

  75. Champagne, D., Beaulieu, J. & Drolet, G. CRFergic innervation of the paraventricular nucleus of the rat hypothalamus: a tract-tracing study. J. Neuroendocrinol. 10, 119–131 (1998).

    CAS  PubMed  Google Scholar 

  76. Cullinan, W. E., Herman, J. P. & Watson, S. J. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J. Comp. Neurol. 332, 1–20 (1993). This study used dual tracing methods to demonstrate innervation of PVN-projecting neurons by ventral subiculum (that is, hippocampal) efferents. It also documented the predominantly GABAergic phenotype of most PVN-projecting regions in the BST.

    CAS  PubMed  Google Scholar 

  77. Ciriello, J. & Janssen, S. A. Effect of glutamate stimulation of bed nucleus of the stria terminalis on arterial pressure and heart rate. Am. J. Physiol. 265, H1516–H1522 (1993).

    CAS  PubMed  Google Scholar 

  78. Gelsema, A. J. & Calaresu, F. R. Chemical microstimulation of the septal area lowers arterial pressure in the rat. Am. J. Physiol. 252, R760–R767 (1987).

    CAS  PubMed  Google Scholar 

  79. Hatam, M. & Nasimi, A. Glutamatergic systems in the bed nucleus of the stria terminalis, effects on cardiovascular system. Exp. Brain Res. 178, 394–401 (2007).

    CAS  PubMed  Google Scholar 

  80. Alves, F. H., Crestani, C. C., Resstel, L. B. & Correa, F. M. Cardiovascular effects of carbachol microinjected into the bed nucleus of the stria terminalis of the rat brain. Brain Res. 1143, 161–168 (2007).

    CAS  PubMed  Google Scholar 

  81. Crestani, C. C., Alves, F. H., Resstel, L. B. & Correa, F. M. Both α1 and α2-adrenoceptors mediate the cardiovascular responses to noradrenaline microinjected into the bed nucleus of the stria terminal of rats. Br. J. Pharmacol. 153, 583–590 (2008).

    CAS  PubMed  Google Scholar 

  82. Crestani, C. C., Alves, F. H., Tavares, R. F. & Correa, F. M. Role of the bed nucleus of the stria terminalis in the cardiovascular responses to acute restraint stress in rats. Stress 10 Oct 2008 (doi:10.1080/10253890802331477).

    CAS  PubMed  Google Scholar 

  83. Viau, V. & Meaney, M. J. The inhibitory effect of testosterone on hypothalamo-pituitary-adrenal responses to stress is mediated by the medial preoptic area. J. Neurosci. 16, 1866–1876 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zaretsky, D. V., Hunt, J. L., Zaretskaia, M. V. & DiMicco, J. A. Microinjection of prostaglandin E2 and muscimol into the preoptic area in conscious rats: comparison of effects on plasma adrenocorticotrophic hormone (ACTH), body temperature, locomotor activity, and cardiovascular function. Neurosci. Lett. 397, 291–296 (2006).

    CAS  PubMed  Google Scholar 

  85. Feldman, S., Conforti, N. & Saphier, D. The preoptic area and bed nucleus of the stria terminalis are involved in the effects of the amygdala on adrenocortical secretion. Neuroscience 37, 775–779 (1990).

    CAS  PubMed  Google Scholar 

  86. Swanson, L. W. in Handbook of Chemical Neuroanatomy (eds Björklund, A., Hökfelt, T. & Swanson, L. W.) 1–124 (Elsevier, Amsterdam, 1987).

    Google Scholar 

  87. Canteras, N. S., Simerly, R. B. & Swanson, L. W. Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J. Comp. Neurol. 360, 213–245 (1995).

    CAS  PubMed  Google Scholar 

  88. Sawchenko, P. E. Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. J. Comp. Neurol. 402, 435–441 (1998).

    CAS  PubMed  Google Scholar 

  89. Woods, S. C. The eating paradox: how we tolerate food. Psychol. Rev. 98, 488–505 (1991).

    CAS  PubMed  Google Scholar 

  90. Swanson, L. W., Sanchez-Watts, G. & Watts, A. G. Comparison of melanin-concentrating hormone and hypocretin/orexin mRNA expression patterns in a new parceling scheme of the lateral hypothalamic zone. Neurosci. Lett. 387, 80–84 (2005).

    CAS  PubMed  Google Scholar 

  91. Ziegler, D. R., Cullinan, W. E. & Herman, J. P. Distribution of vesicular glutamate transporter mRNA in rat hypothalamus. J. Comp. Neurol. 448, 217–229 (2002).

    CAS  PubMed  Google Scholar 

  92. Cascio, C. S., Shinsako, J. & Dallman, M. F. The suprachiasmatic nuclei stimulate evening ACTH secretion in the rat. Brain Res. 423, 173–178 (1987).

    CAS  PubMed  Google Scholar 

  93. Kalsbeek, A., La Fleur, S., Van Heijningen, C. & Buijs, R. M. Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J. Neurosci. 24, 7604–7613 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Buijs, R. M., Wortel, J., Van Heerikhuize, J. J. & Kalsbeek, A. Novel environment induced inhibition of corticosterone secretion: physiological evidence for a suprachiasmatic nucleus mediated neuronal hypothalamo-adrenal cortex pathway. Brain Res. 758, 229–236 (1997).

    CAS  PubMed  Google Scholar 

  95. Watts, A. G., Swanson, L. W. & Sanchez-Watts, G. Efferent projections of the suprachiasmatic nucleus: studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258, 204–229 (1987).

    CAS  PubMed  Google Scholar 

  96. Magarinos, A. M. & McEwen, B. S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98 (1995). One of an excellent series of papers from the McEwen group demonstrating the ability of stress to alter the structure of hippocampal neurons. Knowledge of this subject is vital for understanding potential mechanisms of chronic stress-induced plasticity of stress circuitry.

    CAS  PubMed  Google Scholar 

  97. Radley, J. J. et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 507, 1141–1150 (2008).

    PubMed  PubMed Central  Google Scholar 

  98. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Herman, J. P., Adams, D. & Prewitt, C. M. Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61, 180–190 (1995).

    CAS  PubMed  Google Scholar 

  100. Makino, S., Smith, M. A. & Gold, P. W. Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Endocrinology 136, 3299–3309 (1995).

    CAS  PubMed  Google Scholar 

  101. Cullinan, W. E. GABAA receptor subunit expression within hypophysiotropic CRH neurons: a dual hybridization histochemical study. J. Comp. Neurol. 419, 344–351 (2000).

    CAS  PubMed  Google Scholar 

  102. Ziegler, D. R., Cullinan, W. E. & Herman, J. P. Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-D-aspartate receptors. J. Comp. Neurol. 484, 43–56 (2005).

    CAS  PubMed  Google Scholar 

  103. Bowers, G., Cullinan, W. E. & Herman, J. P. Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J. Neurosci. 18, 5938–5947 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Akana, S. F. et al. Feedback and facilitation in the adrenocortical system: unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology 131, 57–68 (1992).

    CAS  PubMed  Google Scholar 

  105. Ulrich-Lai, Y. M. et al. Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology 148, 1823–1834 (2007).

    CAS  PubMed  Google Scholar 

  106. Bhatnagar, S. & Dallman, M. Neuroanatomical basis for facilitation of hypothalamic-pituitary- adrenal responses to a novel stressor after chronic stress. Neuroscience 84, 1025–1039 (1998). The first paper to document possible neural mechanisms of chronic stress facilitation of HPA axis stress responses.

    CAS  PubMed  Google Scholar 

  107. Choi, D. C. et al. The anteroventral bed nucleus of the stria terminalis differentially regulates hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress. Endocrinology 149, 818–826 (2008).

    CAS  PubMed  Google Scholar 

  108. Nisenbaum, L. K. & Abercrombie, E. D. Presynaptic alterations associated with enhancement of evoked release and synthesis of norepinephrine in hippocampus of chronically cold-stressed rats. Brain Res. 608, 280–287 (1993).

    CAS  PubMed  Google Scholar 

  109. Jedema, H. P., Finlay, J. M., Sved, A. F. & Grace, A. A. Chronic cold exposure potentiates CRH-evoked increases in electrophysiologic activity of locus coeruleus neurons. Biol. Psychiatry 49, 351–359 (2001).

    CAS  PubMed  Google Scholar 

  110. Mana, M. J. & Grace, A. A. Chronic cold stress alters the basal and evoked electrophysiological activity of rat locus coeruleus neurons. Neuroscience 81, 1055–1064 (1997).

    CAS  PubMed  Google Scholar 

  111. Holmes, P. V., Blanchard, D. C., Blanchard, R. J., Brady, L. S. & Crawley, J. N. Chronic social stress increases levels of preprogalanin mRNA in the rat locus coeruleus. Pharmacol. Biochem. Behav. 50, 655–660 (1995).

    CAS  PubMed  Google Scholar 

  112. Watanabe, Y. et al. Effects of chronic social stress on tyrosine hydroxylase mRNA and protein levels. Brain Res. Mol. Brain Res. 32, 176–180 (1995).

    CAS  PubMed  Google Scholar 

  113. Smith, M. A., Brady, L. S., Glowa, J., Gold, P. W. & Herkenham, M. Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in locus coeruleus by in situ hybridization. Brain Res. 544, 26–32 (1991).

    CAS  PubMed  Google Scholar 

  114. Makino, S., Gold, P. W. & Schulkin, J. Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus. Brain Res. 640, 105–112 (1994).

    CAS  PubMed  Google Scholar 

  115. Ulrich-Lai, Y. M. et al. Limbic and HPA axis function in an animal model of chronic neuropathic pain. Physiol. Behav. 88, 67–76 (2006).

    CAS  PubMed  Google Scholar 

  116. Figueiredo, H. F., Bodie, B. L., Tauchi, M., Dolgas, C. M. & Herman, J. P. Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144, 5249–5258 (2003).

    CAS  PubMed  Google Scholar 

  117. Cook, C. J. Stress induces CRF release in the paraventricular nucleus, and both CRF and GABA release in the amygdala. Physiol. Behav. 82, 751–762 (2004).

    CAS  PubMed  Google Scholar 

  118. Cook, C. J. Glucocorticoid feedback increases the sensitivity of the limbic system to stress. Physiol. Behav. 75, 455–464 (2002).

    CAS  PubMed  Google Scholar 

  119. Gomez, F., Lahmame, A., de Kloet, E. R. & Armario, A. Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains: differential responses are mainly located at the adrenocortical level. Neuroendocrinology 63, 327–337 (1996).

    CAS  PubMed  Google Scholar 

  120. Mizoguchi, K., Ishige, A., Aburada, M. & Tabira, T. Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119, 887–897 (2003).

    CAS  PubMed  Google Scholar 

  121. Reul, J. M. & de Kloet, E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511 (1985). A classic paper that demonstrated the existence and differential binding affinities of MRs and GRs in the brain.

    CAS  PubMed  Google Scholar 

  122. Grippo, A. J., Moffitt, J. A. & Johnson, A. K. Cardiovascular alterations and autonomic imbalance in an experimental model of depression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1333–R1341 (2002). A demonstration of the influence of chronic stress on autonomic function in the rat.

    CAS  PubMed  Google Scholar 

  123. Dhabhar, F. S., McEwen, B. S. & Spencer, R. L. Adaptation to prolonged or repeated stress–comparison between rat strains showing intrinsic differences in reactivity to acute stress. Neuroendocrinology 65, 360–368 (1997).

    CAS  PubMed  Google Scholar 

  124. Stamp, J. & Herbert, J. Corticosterone modulates autonomic responses and adaptation of central immediate-early gene expression to repeated restraint stress. Neuroscience 107, 465–479 (2001).

    CAS  PubMed  Google Scholar 

  125. Cole, M. A. et al. Selective blockade of the mineralocorticoid receptor impairs hypothalamic-pituitary-adrenal axis expression of habituation. J. Neuroendocrinol. 12, 1034–1042 (2000).

    CAS  PubMed  Google Scholar 

  126. Bhatnagar, S., Huber, R., Nowak, N. & Trotter, P. Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint. J. Neuroendocrinol. 14, 403–410 (2002).

    CAS  PubMed  Google Scholar 

  127. Fernandes, G. A. et al. Habituation and cross-sensitization of stress-induced hypothalamic-pituitary-adrenal activity: effect of lesions in the paraventricular nucleus of the thalamus or bed nuclei of the stria terminalis. J. Neuroendocrinol. 14, 593–602 (2002).

    CAS  PubMed  Google Scholar 

  128. Hurley, K. M., Herbert, H., Moga, M. M. & Saper, C. B. Efferent projections of the infralimbic cortex of the rat. J. Comp. Neurol. 308, 249–276 (1991).

    CAS  PubMed  Google Scholar 

  129. Sesack, S. R., Deutch, A. Y., Roth, R. H. & Bunney, B. S. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol. 290, 213–242 (1989).

    CAS  PubMed  Google Scholar 

  130. Li, S. & Kirouac, G. J. Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J. Comp. Neurol. 506, 263–287 (2008).

    PubMed  Google Scholar 

  131. Moga, M. M., Weis, R. P. & Moore, R. Y. Efferent projections of the paraventricular thalamic nucleus in the rat. J. Comp. Neurol. 359, 221–238 (1995).

    CAS  PubMed  Google Scholar 

  132. Bartolomucci, A. et al. Chronic psychosocial stress persistently alters autonomic function and physical activity in mice. Physiol. Behav. 80, 57–67 (2003).

    CAS  PubMed  Google Scholar 

  133. Farah, V. M., Joaquim, L. F., Bernatova, I. & Morris, M. Acute and chronic stress influence blood pressure variability in mice. Physiol. Behav. 83, 135–142 (2004).

    CAS  PubMed  Google Scholar 

  134. LeDoux, J. The amygdala. Curr. Biol. 17, R868–R874 (2007).

    CAS  PubMed  Google Scholar 

  135. Bishop, S. J. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn. Sci. 11, 307–316 (2007).

    PubMed  Google Scholar 

  136. Sanders, M. J., Wiltgen, B. J. & Fanselow, M. S. The place of the hippocampus in fear conditioning. Eur. J. Pharmacol. 463, 217–223 (2003).

    CAS  PubMed  Google Scholar 

  137. Shors, T. J. Stressful experience and learning across the lifespan. Annu. Rev. Psychol. 57, 55–85 (2006).

    PubMed  PubMed Central  Google Scholar 

  138. Smotherman, W. P., Kolp, L. A., Coyle, S. & Levine, S. Hippocampal lesion effects on conditioned taste aversion and pituitary-adrenal activity in rats. Behav. Brain Res. 2, 33–48 (1981). One of the first papers to show that conditioned HPA responses to an anticipated stressor (in a conditioned taste-aversion paradigm) depend on an intact hippocampus.

    CAS  PubMed  Google Scholar 

  139. Sullivan, G. M. et al. Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience 128, 7–14 (2004). Demonstrated that the CeA is required for both contextual- and cue-conditioned HPA axis responses, whereas the BST is only necessary for contextually conditioned HPA axis responses.

    CAS  PubMed  Google Scholar 

  140. Resstel, L. B., de Aguiar Correa, F. M. & Silveira Guimaraes, F. The expression of contextual fear conditioning involves activation of an NMDA receptor nitric oxide pathway in the medial prefrontal cortex. Cereb. Cortex 18, 2027–2035 (2007).

    PubMed  Google Scholar 

  141. Kosten, T. & Contreras, R. J. Deficits in conditioned heart rate and taste aversion in area postrema-lesioned rats. Behav. Brain Res. 35, 9–21 (1989).

    CAS  PubMed  Google Scholar 

  142. Supple, W. F. Jr & Leaton, R. N. Lesions of the cerebellar vermis and cerebellar hemispheres: effects on heart rate conditioning in rats. Behav. Neurosci. 104, 934–947 (1990).

    PubMed  Google Scholar 

  143. Furlong, T. & Carrive, P. Neurotoxic lesions centered on the perifornical hypothalamus abolish the cardiovascular and behavioral responses of conditioned fear to context but not of restraint. Brain Res. 1128, 107–119 (2007).

    CAS  PubMed  Google Scholar 

  144. Iwata, J., LeDoux, J. E. & Reis, D. J. Destruction of intrinsic neurons in the lateral hypothalamus disrupts the classical conditioning of autonomic but not behavioral emotional responses in the rat. Brain Res. 368, 161–166 (1986).

    CAS  PubMed  Google Scholar 

  145. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 28, 309–369 (1998).

    CAS  PubMed  Google Scholar 

  146. Wise, R. A. Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240 (2002).

    CAS  PubMed  Google Scholar 

  147. Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).

    CAS  PubMed  Google Scholar 

  148. Heimer, L., Zahm, D. S., Churchill, L., Kalivas, P. W. & Wohltmann, C. Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41, 89–125 (1991).

    CAS  PubMed  Google Scholar 

  149. Usuda, I., Tanaka, K. & Chiba, T. Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res. 797, 73–93 (1998).

    CAS  PubMed  Google Scholar 

  150. Goeders, N. E. Stress and cocaine addiction. J. Pharmacol. Exp. Ther. 301, 785–789 (2002).

    CAS  PubMed  Google Scholar 

  151. Koob, G. & Kreek, M. J. Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am. J. Psychiatry 164, 1149–1159 (2007).

    PubMed  PubMed Central  Google Scholar 

  152. Cannon, W. B. Bodily changes in pain, hunger, fear and rage; an account of recent researches into the function of emotional excitement (D. Appleton and Co., New York, London, 1929).

    Google Scholar 

  153. Ulrich-Lai, Y. M. & Engeland, W. C. in Handbook of Stress and the Brain (eds Steckler, T., Kalin, N. H. & Reul, J.) 419–435 (Elsevier, Amsterdam, 2005).

    Google Scholar 

  154. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 4th edn (Academic, San Diego, 1998).

    Google Scholar 

Download references

Acknowledgements

The authors thank present and past members of the Herman laboratory for their contributions to this work, and S. Woods for his comments on the Review. The authors' work cited in this Review was supported by US National Institutes of Health grants MH049698, MH069860, MH069725, AG12962 and DK078906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Herman.

Supplementary information

Supplementary information S1 (box)

Conditioning of stress responses (PDF 196 kb)

Supplementary information S2 (box)

Reward and stress effectors (PDF 286 kb)

Related links

Related links

FURTHER INFORMATION

James P. Herman's homepage

Glossary

Limbic system

The collection of highly interconnected forebrain structures that are involved in processing emotion and memory.

Chronic stress

Ongoing or repeated exposure to one or more types of stress stimuli over a period ranging from days to months.

Preganglionic

Relating to the first neuron in the two-neuron chains that mediate autonomic responses.

Postganglionic

Relating to the second neuron in the two-neuron chains that mediate autonomic responses.

Subfornical organ

A forebrain circumventricular organ that lacks a blood–brain barrier.

Preautonomic

Relating to the CNS neurons that are involved in regulating preganglionic sympathetic or parasympathetic neurons in the spinal cord and/or brainstem.

FOS

An immediate early gene, expression of which is tightly linked to recent cellular excitation.

Bradycardic response

A slowing of the heart rate.

Depressor response

A decrease in blood pressure.

Pressor response

An increase in blood pressure.

Glutamic acid decarboxylase

(GAD). The enzyme that synthesizes GABA. It exists in two isoforms, GAD65 and GAD67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrich-Lai, Y., Herman, J. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10, 397–409 (2009). https://doi.org/10.1038/nrn2647

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing