Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stress signalling pathways that impair prefrontal cortex structure and function

Key Points

  • The prefrontal cortex (PFC) provides 'top-down', higher-order guidance of thought, attention, behaviour and emotion, with dorsolateral regions regulating cognition, and ventromedial regions regulating emotion.

  • The ability of the PFC to represent information in working memory requires interconnected neuronal networks. For example, spatial working memory requires spatially tuned, persistent firing while information is held 'in mind'; this persistent firing arises from recurrent excitation in a network of similarly tuned prefrontal neurons.

  • Prefrontal networks are very sensitive to their neurochemical environment. Either too little or too much noradrenaline or dopamine markedly impairs prefrontal spatial working memory function.

  • Exposure to even quite mild uncontrollable stress causes a rapid impairment in prefrontal function in animals and humans. This might have survival value when we are in danger but be maladaptive when the situation requires higher order or complex responses.

  • Stress impairs prefrontal working memory abilities through high levels of monoamine and glucocorticoid release. These neurochemical events involve powerful intracellular signalling events that reduce prefrontal firing and impair performance: high levels of cyclic AMP–hyperpolarization-activated cyclic nucleotide-gated (HCN) channel signalling weaken prefrontal network connectivity, and high levels of phosphatidylinositol–protein kinase C signalling suppress prefrontal firing.

  • The same neurochemical events that impair prefrontal working memory abilities actually strengthen the emotional operations of the amygdala. Thus, uncontrollable stress switches control of behaviour from the thoughtful PFC to the more primitive conditioned responses of the amygdala.

  • With chronic stress or glucocorticoid exposure the dendrites and dendritic spines of prefrontal pyramidal cells retract, whereas dendrites in the amygdala expand. Loss of dendritic material from prefrontal pyramidal cells correlates with loss of prefrontal cognitive abilities.

  • Many mental illnesses are worsened by stress exposure and are associated with impaired prefrontal function and reduced prefrontal grey matter. Recent genetic studies show that many of the molecules that inhibit intracellular stress signalling pathways can be altered in families with mental illness, which might increase susceptibility to prefrontal dysfunction.

  • Environmental insults can also erode prefrontal function by activating stress pathways. For example, lead poisoning may impair prefrontal function by potently activating protein kinase C.

Abstract

The prefrontal cortex (PFC) — the most evolved brain region — subserves our highest-order cognitive abilities. However, it is also the brain region that is most sensitive to the detrimental effects of stress exposure. Even quite mild acute uncontrollable stress can cause a rapid and dramatic loss of prefrontal cognitive abilities, and more prolonged stress exposure causes architectural changes in prefrontal dendrites. Recent research has begun to reveal the intracellular signalling pathways that mediate the effects of stress on the PFC. This research has provided clues as to why genetic or environmental insults that disinhibit stress signalling pathways can lead to symptoms of profound prefrontal cortical dysfunction in mental illness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial working memory networks in the dorsolateral prefrontal cortex.
Figure 2: Catecholamine influences on prefrontal cortex physiology and function.
Figure 3: Intracellular signalling pathways that impair prefrontal cortex working memory functions during stress.
Figure 4: A working model showing how prefrontal cortex pyramidal cell activity might be regulated under optimal versus stress conditions.

Similar content being viewed by others

References

  1. Fuster, J. M. The Prefrontal Cortex (Academic Press, 2008). This is the most recent edition of a classic and eloquent book on the PFC.

    Google Scholar 

  2. Goldman-Rakic, P. S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1445–1453 (1996).

    CAS  PubMed  Google Scholar 

  3. Thompson-Schill, S. L. et al. Effects of frontal lobe damage on interference effects in working memory. Cogn. Affect. Behav. Neurosci. 2, 109–120 (2002).

    PubMed  Google Scholar 

  4. Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8, 170–177 (2004).

    PubMed  Google Scholar 

  5. Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    CAS  PubMed  Google Scholar 

  6. Gazzaley, A. et al. Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cereb. Cortex 17 (Suppl. 1), i125–i135 (2007).

    PubMed  Google Scholar 

  7. Robbins, T. W. From arousal to cognition: the integrative position of the prefrontal cortex. Prog. Brain Res. 126, 469–483 (2000). This review brings together important information on prefrontal circuits and how they are modulated.

    CAS  PubMed  Google Scholar 

  8. Lee, D. & Seo, H. Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex. Ann. NY Acad. Sci. 1104, 108–122 (2007).

    PubMed  Google Scholar 

  9. Modirrousta, M. & Fellows, L. K. Dorsal medial prefrontal cortex plays a necessary role in rapid error prediction in humans. J. Neurosci. 28, 14000–14005 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Broadbent, D. Decision and Stress (Academic, London, 1971). This is a classic book on the effects of stress on cognitive function.

    Google Scholar 

  11. Hockey, G. R. J. Effect of loud noise on attentional selectivity. Q. J. Exp. Psychol. 22, 28–36 (1970).

    Google Scholar 

  12. Hartley, L. R. & Adams, R. G. Effect of noise on the Stroop test. J. Exp. Psychol. 102, 62–66 (1974).

    CAS  PubMed  Google Scholar 

  13. Arnsten, A. F. T. The biology of feeling frazzled. Science 280, 1711–1712 (1998).

    CAS  PubMed  Google Scholar 

  14. Elliott, A. E. & Packard, M. G. Intra-amygdala anxiogenic drug infusion prior to retrieval biases rats towards the use of habit memory. Neurobiol. Learn. Mem. 90, 616–623 (2008).

    CAS  PubMed  Google Scholar 

  15. Glass, D. C., Reim, B. & Singer, J. E. Behavioral consequences of adaptation to controllable and uncontrollable noise. J. Exp. Social Psychol. 7, 244–257 (1971).

    Google Scholar 

  16. Minor, T. R., Jackson, R. L. & Maier, S. F. Effects of task-irrelevant cues and reinforcement delay on choice-escape learning following inescapable shock: evidence for a deficit in selective attention. J. Exp. Psychol. Anim. Behav. Process. 10, 543–556 (1984).

    CAS  PubMed  Google Scholar 

  17. Qin, S., Hermans, E. J., van Marle, H. J. F., Lou, J. & Fernandez, G. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiatry (in the press).

  18. Dolcos, F. & McCarthy, G. Brain systems mediating cognitive interference by emotional distraction. J. Neurosci. 26, 2072–2079 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E. & Beversdorf, D. Q. Beta-adrenergic modulation of cognitive flexibility during stress. J. Cogn. Neurosci. 19, 468–478 (2007).

    PubMed  Google Scholar 

  20. Luethi, M., Meier, B. & Sandi, C. Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men. Front. Behav. Neurosci. 15 Jan 2009 (doi:10.3389/neuro.08.005.2008).

  21. Sinha, R., Lacadie, C. M., Skudlarski, P. & Wexler, B. E. Neural circuits underlying emotional distress in humans. Ann. NY Acad. Sci. 1032, 254–257 (2004).

    PubMed  Google Scholar 

  22. Li, C. S. & Sinha, R. Inhibitory control and emotional stress regulation: neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. Neurosci. Biobehav. Rev. 32, 581–597 (2008). This paper relates prefrontal dysfunction during stress to substance abuse.

    PubMed  Google Scholar 

  23. Liston, C., McEwen, B. S. & Casey, B. J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl Acad. Sci. USA 106, 912–917 (2009). This paper includes data on how chronic stress weakens prefrontal connectivity in both human subjects and rats exposed to chronic stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mazure, C. M. (ed.) Does Stress Cause Psychiatric Illness? (American Psychiatric Press, Washington DC, 1995). This book gives many examples of how stress worsens mental illness.

    Google Scholar 

  25. Mazure, C. M. & Maciejewski, P. K. A model of risk for major depression: effects of life stress and cognitive style vary by age. Depress. Anxiety 17, 26–33 (2003).

    PubMed  Google Scholar 

  26. Southwick, S., Rasmusson, A., Barron, X. & Arnsten, A. F. T. in Neuropsychology of PTSD: Biological, Cognitive and Clinical Perspectives (eds Vasterling, J. J. & Brewin, C. R.) 27–58 (Guilford Publications, New York, 2005).

    Google Scholar 

  27. Breier, A., Wolkowitz, O. & Pickar, D. in Schizophrenia Research Vol. 1 (eds Tamminga, C. & Schult, S.) (Raven, New York, 1991).

    Google Scholar 

  28. Dohrenwend, B. P., Shrout, P. E., Link, B. G., Skodol, A. E. & Stueve, A. in Does Stress Cause Psychiatric Illness? (ed. Mazure, C. M.) 43–65 (American Psychiatric Press, Washington DC, 1995).

    Google Scholar 

  29. Hammen, C. & Gitlin, M. Stress reactivity in bipolar patients and its relation to prior history of disorder. Am. J. Psychiatry 154, 856–857 (1997).

    CAS  PubMed  Google Scholar 

  30. Amat, J., Paul, E., Zarza, C., Watkins, L. R. & Maier, S. F. Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex. J. Neurosci. 26, 13264–13272 (2006). This study showed that it is the PFC that ascertains (rightly or wrongly) whether we are in control over a stressor. The PFC suppresses the brainstem stress response even when the perceived control is only an illusion.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Diorio, D., Viau, V. & Meaney, M. J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. 13, 3839–3847 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Murphy, B. L., Arnsten, A. F. T., Goldman-Rakic, P. S. & Roth, R. H. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc. Natl Acad. Sci. USA 93, 1325–1329 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Arnsten, A. F. T. & Goldman-Rakic, P. S. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch. Gen. Psychiatry 55, 362–369 (1998).

    CAS  PubMed  Google Scholar 

  34. Shansky, R. M., Rubinow, K., Brennan, A. & Arnsten, A. F. The effects of sex and hormonal status on restraint-stress-induced working memory impairment. Behav. Brain Funct. 2, 8 (2006).

    PubMed  PubMed Central  Google Scholar 

  35. McEwen, B. S. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. NY Acad. Sci. 1032, 1–7 (2004).

    PubMed  Google Scholar 

  36. Cahill, L. & McGaugh, J. L. Modulation of memory storage. Curr. Opin. Neurobiol. 6, 237–242 (1996).

    CAS  PubMed  Google Scholar 

  37. Quirk, G. J. & Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56–72 (2008).

    PubMed  Google Scholar 

  38. Kim, J. J. & Yoon, K. S. Stress: metaplastic effects in the hippocampus. Trends Neurosci. 21, 505–509 (1998).

    CAS  PubMed  Google Scholar 

  39. Packard, M. G. & Teather, L. A. Amygdala modulation of multiple memory systems: hippocampus and caudate-putamen. Neurobiol. Learn. Mem. 69, 163–203 (1998).

    CAS  PubMed  Google Scholar 

  40. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995). This paper describes the microcircuits that underlie spatial working memory, summarizing both their anatomy and their physiology.

    CAS  PubMed  Google Scholar 

  41. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    CAS  PubMed  Google Scholar 

  42. Aston-Jones, G., Rajkowski, J. & Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry 46, 1309–1320 (1999).

    CAS  PubMed  Google Scholar 

  43. Schultz, W. The phasic reward signal of primate dopamine neurons. Adv. Pharmacol. 42, 686–690 (1998).

    CAS  PubMed  Google Scholar 

  44. Matsumoto, M. & Hikosaka, O. Excitatory and inhibitory responses of midbrain dopamine neurons to cues predicting aversive stimuli. Soc. Neurosci. Abstr. 691. 24 (2008).

    Google Scholar 

  45. Roth, R. H., Tam, S.-Y., Ida, Y., Yang, J.-X. & Deutch, A. Y. Stress and the mesocorticolimbic dopamine systems. Ann. NY Acad. Sci. 537, 138–147 (1988).

    CAS  PubMed  Google Scholar 

  46. Finlay, J. M., Zigmond, M. J. & Abercrombie, E. D. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 64, 619–628 (1995).

    CAS  PubMed  Google Scholar 

  47. Deutch, A. Y. & Roth, R. H. The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog. Brain Res. 85, 367–403 (1990). This paper summarizes the numerous biochemical studies of dopamine release in the PFC during stress exposure.

    CAS  PubMed  Google Scholar 

  48. Lewis, D. A., Cambell, M. J., Foote, S. L., Goldstein, M. & Morrison, J. H. The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J. Neurosci. 282, 317–330 (1987).

    Google Scholar 

  49. McCormick, D. A., Pape, H. C. & Williamson, A. Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog. Brain Res. 88, 293–305 (1991).

    CAS  PubMed  Google Scholar 

  50. Seamans, J. K., Durstewitz, D., Christie, B. R., Stevens, C. F. & Sejnowski, T. J. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc. Natl Acad. Sci. USA 98, 301–306 (2001).

    CAS  PubMed  Google Scholar 

  51. Arnsten, A. F. T. Through the looking glass:differential noradrenergic modulation of prefrontal cortical function. Neural Plast. 7, 133–146 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arnsten, A. F. T. & Goldman-Rakic, P. S. Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230, 1273–1276 (1985).

    CAS  PubMed  Google Scholar 

  53. Li, B.-M. & Mei, Z.-T. Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav. Neural Biol. 62, 134–139 (1994).

    CAS  PubMed  Google Scholar 

  54. Birnbaum, S. G., Gobeske, K. T., Auerbach, J., Taylor, J. R. & Arnsten, A. F. T. A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in prefrontal cortex. Biol. Psychiatry 46, 1266–1274 (1999).

    CAS  PubMed  Google Scholar 

  55. Ramos, B. et al. The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol. Psychiatry 58, 894–900 (2005).

    CAS  PubMed  Google Scholar 

  56. Cai, J. X., Ma, Y., Xu, L. & Hu, X. Reserpine impairs spatial working memory performance in monkeys: reversal by the alpha-2 adrenergic agonist clonidine. Brain Res. 614, 191–196 (1993).

    CAS  PubMed  Google Scholar 

  57. Mao, Z.-M., Arnsten, A. F. T. & Li, B.-M. Local infusion of alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol. Psychiatry 46, 1259–1265 (1999).

    CAS  PubMed  Google Scholar 

  58. Ramos, B., Stark, D., Verduzco, L., van Dyck, C. H. & Arnsten, A. F. T. Alpha-2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learn. Mem. 13, 770–776 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, B.-M., Mao, Z.-M., Wang, M. & Mei, Z.-T. Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology 21, 601–610 (1999).

    CAS  PubMed  Google Scholar 

  60. Wang, M. et al. α2A-adrenoceptor stimulation strengthens working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).

    CAS  PubMed  Google Scholar 

  61. Birnbaum, S. B. et al. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306, 882–884 (2004).

    CAS  PubMed  Google Scholar 

  62. Arnsten, A. F. T., Mathew, R., Ubriani, R., Taylor, J. R. & Li, B.-M. α-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol. Psychiatry 45, 26–31 (1999).

    CAS  PubMed  Google Scholar 

  63. Taylor, F. & Raskind, M. A. The α1-adrenergic antagonist prazosin improves sleep and nightmares in civilian trauma posttraumatic stress disorder. J. Clin. Psychopharmacol. 22, 82–85 (2002).

    CAS  PubMed  Google Scholar 

  64. Raskind, M. A. et al. Prazosin reduces nightmares and other PTSD symptoms in combat veterans: a placebo-controlled study. Am. J. Psychiatry 160, 371–373 (2003).

    PubMed  Google Scholar 

  65. Arnsten, A. F. T. & Goldman-Rakic, P. S. Stress impairs prefrontal cortex cognitive function in monkeys: role of dopamine. Soc. Neurosci. Abstr. 16, 164 (1990).

    Google Scholar 

  66. Sawaguchi, T. & Goldman-Rakic, P. S. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251, 947–950 (1991).

    CAS  PubMed  Google Scholar 

  67. Zahrt, J., Taylor, J. R., Mathew, R. G. & Arnsten, A. F. T. Supranormal stimulation of dopamine D1 receptors in the rodent prefrontal cortex impairs spatial working memory performance. J. Neurosci. 17, 8528–8535 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vijayraghavan, S. et al. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neurosci. 10, 376–384 (2007).

    CAS  PubMed  Google Scholar 

  69. Druzin, M. Y., Kurzina, N. P., Malinina, E. P. & Kozlov, A. P. The effects of local application of D2 selective dopaminergic drugs into the medial prefrontal cortex of rats in a delayed spatial choice task. Behav. Brain Res. 109, 99–111 (2000).

    CAS  PubMed  Google Scholar 

  70. Gibbs, S. E. & D'Esposito, M. A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology 180, 644–653 (2005).

    CAS  PubMed  Google Scholar 

  71. Wang, M., Vijayraghavan, S. & Goldman-Rakic, P. S. Selective D2 receptor actions on the functional circuitry of working memory. Science 303, 853–856 (2004).

    CAS  PubMed  Google Scholar 

  72. Kimberg, D. Y., D'Esposito, M. & Farah, M. J. Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 8, 3581–3585 (1997).

    CAS  PubMed  Google Scholar 

  73. Egan, M. F. et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. USA 98, 6917–6922 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mattay, V. S. et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc. Natl Acad. Sci. USA 100, 6186–6191 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Papaleo, F. et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J. Neurosci. 28, 8709–8723 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Roozendaal, B., McReynolds, J. R. & McGaugh, J. L. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J. Neurosci. 24, 1385–1392 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lupien, S. J., Gillin, C. J. & Hauger, R. L. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose-response study in humans. Behav. Neurosci. 113, 420–430 (1999).

    CAS  PubMed  Google Scholar 

  78. Grundemann, D., Schechinger, B., Rappold, G. A. & Schomig, E. Molecular identification of the cortisone-sensitive extraneuronal catecholamine transporter. Nature Neurosci. 1, 349–351 (1998).

    CAS  PubMed  Google Scholar 

  79. Ferry, B., Roozendaal, B. & McGaugh, J. L. Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between β- and α-1-adrenoceptors. J. Neurosci. 19, 5119–5123 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Roozendaal, B., Quirarte, G. L. & McGaugh, J. L. Glucocorticoids interact with the basolateral amygdala β-adrenoceptor–cAMP/cAMP/PKA system in influencing memory consolidation. Eur. J. Neurosci. 15, 553–560 (2002).

    PubMed  Google Scholar 

  81. Goldstein, L. E., Rasmusson, A. M., Bunney, S. B. & Roth, R. H. Role of the amygdala in the coordination of behavioral, neuroendocrine and prefrontal cortical monoamine responses to psychological stress in the rat. J. Neurosci. 16, 4787–4798 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hopkins, W. F. & Johnston, D. Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J. Neurophys. 59, 667–687 (1988).

    CAS  Google Scholar 

  83. Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160–173 (2007).

    CAS  PubMed  Google Scholar 

  84. Foote, S. L., Freedman, F. E. & Oliver, A. P. Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Res. 86, 229–242 (1975).

    CAS  PubMed  Google Scholar 

  85. Waterhouse, B. D., Moises, H. C. & Woodward, D. J. Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative transmitters. Exp. Neurol. 69, 30–49 (1980).

    CAS  PubMed  Google Scholar 

  86. Waterhouse, B. D., Moises, H. C. & Woodward, D. J. Alpha-receptor-mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology 20, 907–920 (1981).

    CAS  PubMed  Google Scholar 

  87. Wickens, J. R., Horvitz, J. C., Costa, R. M. & Killcross, S. Dopaminergic mechanisms in actions and habits. J. Neurosci. 27, 8181–8183 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Runyan, J. D., Moore, A. N. & Dash, P. K. A role for prefrontal calcium-sensitive protein phosphatase and kinase activities in working memory. Learn. Mem. 12, 103–110 (2005).

    PubMed  PubMed Central  Google Scholar 

  89. Hagenston, A. M., Fitzpatrick, J. S. & Yeckel, M. F. mGluR-mediated calcium waves that invade the soma regulate firing in layer V medial prefrontal cortical pyramidal neurons. Cereb. Cortex 18, 407–423 (2008).

    PubMed  Google Scholar 

  90. Runyan, J. D. & Dash, P. K. Distinct prefrontal molecular mechanisms for information storage lasting seconds versus minutes. Learn. Mem. 12, 232–238 (2005). This important study demonstrated that distinct memory processes can be modulated in very different ways, even in the same brain region.

    PubMed  PubMed Central  Google Scholar 

  91. Bos, J. L. Epac proteins: multi-purpose cAMP targets. Trends Biochem. Sci. 31, 680–686 (2006).

    CAS  PubMed  Google Scholar 

  92. Wahl-Schott, C. & Biel, M. HCN channels: structure, cellular regulation and physiological function. Cell. Mol. Life Sci. 66, 470–494 (2009).

    CAS  PubMed  Google Scholar 

  93. Chen, S., Wang, J. & Siegelbaum, S. A. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J. Gen. Physiol. 117, 491–504 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. George, M. S., Abbott, L. F. & Siegelbaum, S. A. Hyperpolarization-activated HCN channels inhibit subthreshold EPSPs through voltage-dependent interactions with M-type K+ channels. Nature Neurosci. (in the press). This important new study used both computational modelling and physiology to explain how HCN channels can shunt incoming synaptic inputs.

  95. Delmas, P. & Brown, D. A. Pathways modulating neural KCNG/M (Kv7) potassium channels. Nature Rev. Neurosci. 6, 850–862 (2005).

    CAS  Google Scholar 

  96. Taylor, J. R., Birnbaum, S. G., Ubriani, R. & Arnsten, A. F. T. Activation of protein kinase A in prefrontal cortex impairs working memory performance. J. Neurosci. 19, RC23 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Soulsby, M. D. & Wojcikiewicz, R. J. The type III inositol 1,4,5-trisphosphate receptor is phosphorylated by cAMP-dependent protein kinase at three sites. Biochem. J. 392, 493–497 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ferguson, G. D. & Storm, D. R. Why calcium-stimulated adenylyl cyclases? Physiology 19, 271–276 (2004).

    CAS  PubMed  Google Scholar 

  99. Partridge, L. D., Swandulla, D. & Muller, T. H. Modulation of calcium-activated non-specific cation currents by cyclic AMP-dependent phosphorylation in neurons of Helix. J. Physiol. 429, 131–145 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Soboloff, J. et al. TRPC channels: integrators of multiple cellular signals. Handb. Exp. Pharmacol. 179, 575–591 (2007).

    CAS  Google Scholar 

  101. Haj-Dahmane, S. & Andrade, R. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. J. Neurophysiol. 80, 1197–1210 (1998).

    CAS  PubMed  Google Scholar 

  102. Tegner, J., Compte, A. & Wang, X. J. The dynamical stability of reverberatory neural circuits. Biol. Cybern. 87, 471–481 (2002).

    PubMed  Google Scholar 

  103. Han, J. Z., Lin, W., Lou, S. J., Qiu, J. & Chen, Y. Z. A rapid, nongenomic action of glucocorticoids in rat B103 neuroblastoma cells. Biochim. Biophys. Acta 1591, 21–27 (2002).

    CAS  PubMed  Google Scholar 

  104. Holmes, A. & Wellman, C. L. Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci. Biobehav. Rev. 6 Dec 2008 (doi:10.1016/j.neubiorev.2008.11.005).

    Google Scholar 

  105. Radley, J. J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex 16, 313–320 (2006).

    PubMed  Google Scholar 

  106. Michelsen, K. A. et al. Prenatal stress and subsequent exposure to chronic mild stress influence dendritic spine density and morphology in the rat medial prefrontal cortex. BMC Neurosci. 8, 107 (2007).

    PubMed  PubMed Central  Google Scholar 

  107. Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cerqueira, J. J., Mailliet, F., Almeida, O. F., Jay, T. M. & Sousa, N. The prefrontal cortex as a key target of the maladaptive response to stress. J. Neurosci. 27, 2781–2787 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Radley, J. J. et al. Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. Exp. Neurol. 196, 199–203 (2005).

    PubMed  Google Scholar 

  110. Brown, S. M., Henning, S. & Wellman, C. L. Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb. Cortex 15, 1714–1722 (2005).

    PubMed  Google Scholar 

  111. Izquierdo, A., Wellman, C. L. & Holmes, A. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J. Neurosci. 26, 5733–5738 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Shansky, R. M., Hamo, C., Hof, P. R., McEwen, B. S. & Morrison, J. H. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb. Cortex 4 Feb 2009 (doi:10.1093/cercor/bhp003). This study shows that not all prefrontal neurons respond similarly to stress, and that there are distinct changes based on the circuits involved.

    PubMed  PubMed Central  Google Scholar 

  114. Miner, L. H. et al. Chronic stress increases the plasmalemmal distribution of the norepinephrine transporter and the coexpression of tyrosine hydroxylase in norepinephrine axons in the prefrontal cortex. J. Neurosci. 26, 1571–1578 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mizoguchi, K. et al. Chronic stress induces impairment of spatial working memory due to prefrontal dopaminergic dysfunction. J. Neurosci. 20, 1568–1575 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wellman, C. L. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol. 49, 245–253 (2001).

    CAS  PubMed  Google Scholar 

  117. Liu, R. J. & Aghajanian, G. K. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc. Natl Acad. Sci. USA 105, 359–364 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhu, M. Y., Wang, W. P., Huang, J. & Regunathan, S. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels. J. Neurochem. 103, 1811–1820 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gourley, S. L., Kedves, A. T., Olausson, P. & Taylor, J. R. A history of corticosterone exposure regulates fear extinction and cortical NR2B, GluR2/3, and BDNF. Neuropsychopharmacology 34, 707–716 (2009).

    CAS  PubMed  Google Scholar 

  120. Lin, Y. et al. Sex differences in the effects of acute and chronic stress and recovery after long-term stress on stress-related brain regions of rats. Cereb. Cortex 10 Dec 2008 (doi:10.1093/cercor/bhn225).

    PubMed  PubMed Central  Google Scholar 

  121. Murmu, M. S. et al. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur. J. Neurosci. 24, 1477–1487 (2006).

    PubMed  Google Scholar 

  122. Pascual, R. & Zamora-León, S. P. Effects of neonatal maternal deprivation and postweaning environmental complexity on dendritic morphology of prefrontal pyramidal neurons in the rat. Acta Neurobiol. Exp. (Wars.) 67, 471–479 (2007).

    Google Scholar 

  123. Parker, K. J., Buckmaster, C. L., Justus, K. R., Schatzberg, A. F. & Lyons, D. M. Mild early life stress enhances prefrontal-dependent response inhibition in monkeys. Biol. Psychiatry 57, 848–855 (2005).

    PubMed  Google Scholar 

  124. Patel, P. D., Katz, M., Karssen, A. M. & Lyons, D. M. Stress-induced changes in corticosteroid receptor expression in primate hippocampus and prefrontal cortex. Psychoneuroendocrinology 33, 360–367 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Meaney, M. J. et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev. Neurosci. 18, 49–72 (1996).

    CAS  PubMed  Google Scholar 

  126. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on brain, behaviour and cognition. Nature Rev. Neurosci. 29 Apr 2009 (doi:10.1038/nrn2639).

    CAS  PubMed  Google Scholar 

  127. Kim-Cohen, J. et al. MAOA, maltreatment, and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol. Psychiatry 11, 903–913 (2006).

    CAS  PubMed  Google Scholar 

  128. Millar, J. K. et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310, 1187–1191 (2005).

    CAS  PubMed  Google Scholar 

  129. Millar, J. K. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423 (2000).

    CAS  PubMed  Google Scholar 

  130. Cannon, T. D. et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch. Gen. Psychiatry 62, 1205–1213 (2005).

    CAS  PubMed  Google Scholar 

  131. Ishizuka, K., Paek, M., Kamiya, A. & Sawa, A. A review of Disrupted-In-Schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions. Biol. Psychiatry 59, 1189–1197 (2006).

    CAS  PubMed  Google Scholar 

  132. Kirkpatrick, B. et al. DISC1 immunoreactivity at the light and ultrastructural level in the human neocortex. J. Comp. Neurol. 497, 436–450 (2006).

    PubMed  Google Scholar 

  133. Paspalas, C. D., Selemon, L. D. & Arnsten, A. F. Mapping the regulator of G protein signaling 4 (RGS4): presynaptic and postsynaptic substrates for neuroregulation in prefrontal cortex. Cereb. Cortex 19 Jan 2009 (doi:10.1093/cercor/bhn235).

    PubMed  PubMed Central  Google Scholar 

  134. Mirnics, K., Middleton, F. A., Stanwood, G. D., Lewis, D. A. & Levitt, P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol. Psychiatry 6, 293–301 (2001).

    CAS  PubMed  Google Scholar 

  135. Erdely, H. A., Tamminga, C. A., Roberts, R. C. & Vogel, M. W. Regional alterations in RGS4 protein in schizophrenia. Synapse 59, 472–479 (2006).

    CAS  PubMed  Google Scholar 

  136. Chowdari, K. V. et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum. Mol. Genet. 11, 1373–1380 (2002).

    CAS  PubMed  Google Scholar 

  137. Morris, D. W. et al. Confirming RGS4 as a susceptibility gene for schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 125, 150–153 (2004).

    Google Scholar 

  138. Baum, A. E. et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 13, 197–207 (2008).

    CAS  PubMed  Google Scholar 

  139. Manji, H. K. & Lenox, R. H. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol. Psychiatry 46, 1328–1351 (1999).

    CAS  PubMed  Google Scholar 

  140. Arnsten, A. F. T. & Manji, H. K. Mania: a rational neurobiology. Future Neurol. 3, 125–131 (2008).

    Google Scholar 

  141. Blumberg, H. P. et al. Age, rapid-cycling, and pharmacotherapy effects on ventral prefrontal cortex in bipolar disorder: a cross-sectional study. Biol. Psychiatry 59, 611–618 (2006).

    CAS  PubMed  Google Scholar 

  142. Bearden, C. E. et al. Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biol. Psychiatry 62, 7–16 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Moore, G. J., Bebchuk, J. M., Wilds, I. B., Chen, G. & Manji, H. K. Lithium-induced increase in human brain gray matter. The Lancet 356, 1241–1242 (2000).

    CAS  Google Scholar 

  144. Bremner, J. D. Neuroimaging studies in post-traumatic stress disorder. Curr. Psychiatry Rep. 4, 254–263 (2002).

    PubMed  Google Scholar 

  145. Southwick, S. M. et al. Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol. Psychiatry 46, 1192–1204 (1999).

    CAS  PubMed  Google Scholar 

  146. Morey, R. A. et al. The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder. J. Psychiatr. Res. 43, 809–817 (2009).

    PubMed  Google Scholar 

  147. Wang, L. et al. Prefrontal mechanisms for executive control over emotional distraction are altered in major depression. Psychiatry Res. 163, 143–155 (2008).

    PubMed  PubMed Central  Google Scholar 

  148. Hayward, C. & Sanborn, K. Puberty and the emergence of gender differences in psychopathology. J. Adolesc. Health 30, 49–58 (2002).

    PubMed  Google Scholar 

  149. Shansky, R. M. et al. Estrogen mediates sex differences in stress-induced prefrontal cortex dysfunction. Mol. Psychiatry 9, 531–538 (2004).

    CAS  PubMed  Google Scholar 

  150. Jentsch, J. D., Roth, R. H. & Taylor, J. R. Role for dopamine in the behavioral functions of the prefrontal corticostriatal system: implications for mental disorders and psychotropic drug action. Prog. Brain Res. 126, 433–453 (2000).

    CAS  PubMed  Google Scholar 

  151. Markovac, J. & Goldstein, G. W. Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334, 71–73 (1988).

    CAS  PubMed  Google Scholar 

  152. Morgan, R. E. et al. Early lead exposure produces lasting changes in sustained attention, response initiation, and reactivity to errors. Neurotoxicol. Teratol. 23, 519–531 (2001).

    CAS  PubMed  Google Scholar 

  153. Cecil, K. M. et al. Decreased brain volume in adults with childhood lead exposure. PLoS Med. 5, e112 (2008).

    PubMed  PubMed Central  Google Scholar 

  154. Nevin, R. How lead exposure relates to temporal changes in IQ, violent crime, and unwed pregnancy. Environ. Res. 83, 1–22 (2000).

    CAS  PubMed  Google Scholar 

  155. Wright, J. P. et al. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med. 5, e101 (2008).

    PubMed  PubMed Central  Google Scholar 

  156. Woolley, D. E. A perspective of lead poisoning in antiquity and the present. Neurotoxicology 5, 353–361 (1984). This paper describes how the fall of the Roman Empire probably involved lead poisoning, a topic of immediate relevance to crime and inappropriate social behaviours in today's society.

    CAS  PubMed  Google Scholar 

  157. Brozoski, T., Brown, R. M., Rosvold, H. E. & Goldman, P. S. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205, 929–931 (1979). This is the landmark paper that first showed that catecholamines are essential to dorsolateral prefrontal working memory abilities. Although the paper focused on dopamine, it is now known that noradrenaline also has an essential role.

    CAS  PubMed  Google Scholar 

  158. Bland, S. T. et al. Stressor controllability modulates stress-induced dopamine and serotonin efflux and morphine-induced serotonin efflux in the medial prefrontal cortex. Neuropsychopharmacology 28, 1589–1596 (2003).

    CAS  PubMed  Google Scholar 

  159. Clarke, H. F., Walker, S. C., Dalley, J. W., Robbins, T. W. & Roberts, A. C. Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb. Cortex 17, 18–27 (2007).

    CAS  PubMed  Google Scholar 

  160. Holmes, A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci. Biobehav. Rev. 32, 1293–1314 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Williams, G. V., Rao, S. G. & Goldman-Rakic, P. S. The physiological role of 5-HT2A receptors in working memory. J. Neurosci. 22, 2843–2854 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Boulougouris, V., Glennon, J. C. & Robbins, T. W. Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33, 2007–2019 (2008).

    CAS  PubMed  Google Scholar 

  163. Goldman-Rakic, P. S. in Handbook of Physiology, The Nervous System, Higher Functions of the Brain Vol. V (ed. Plum, F.) 373–417 (American Physiological Society, Bethesda, 1987). This classic paper describes the parallel anatomical circuits that underlie representational knowledge.

    Google Scholar 

  164. Price, J. L. & Amaral, D. G. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1, 1242–1259 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Price, J. L., Carmichael, S. T. & Drevets, W. C. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog. Brain Res. 107, 523–536 (1996).

    CAS  PubMed  Google Scholar 

  166. Ghashghaei, H. T. & Barbas, H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115, 1261–1279 (2002).

    CAS  PubMed  Google Scholar 

  167. Simons, J. S., Henson, R. N., Gilbert, S. J. & Fletcher, P. C. Separate forms of realty monitoring by the anterior prefrontal cortex. J. Cogn. Neurosci. 20, 447–457 (2008).

    PubMed  PubMed Central  Google Scholar 

  168. Debiec, J. & LeDoux, J. E. Noradrenergic signaling in the amygdala contributes to the reconsolidation of fear memory: treatment implications for PTSD. Ann. NY Acad. Sci. 1071, 521–524 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Much of the research cited in this Review has been supported by MERIT Award AG06036, and by P50MH068789, PO1AG030004 and RL1AA017536 as part of U54RR024350, as well as by the Kavli Neuroscience Institute at Yale and a National Alliance for Research on Schizophrenia and Depression Distinguished Investigator Award to A.F.T.A.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Amy F. T. Arnsten

Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience 10, 410–422 (2009); doi:10.1038/nrn2648

Amy F. T. Arnsten and Yale University have licence agreements with Shire Pharmaceuticals for the development of guanfacine for the treatment of attention-deficit hyperactivity disorder and related disorders, and a licence under negotiation for the development of chelerythrine for the treatment of bipolar disorder, post-traumatic stress disorder and related conditions.

Related links

Related links

FURTHER INFORMATION

Amy F. T. Arnsten's homepage

Glossary

Attentional set

A predisposition to attend to one dimension of a stimulus while inhibiting other dimensions — for example, attending to colour rather than shape.

Trier social stress test

A test in which subjects have to give a speech and perform calculations in front of a panel of people they do not know. Blood or saliva samples and blood pressure measurements can be taken before, during and after the test to determine the physical response to the stressor.

Learned helplessness paradigm

A paradigm developed more than 30 years ago in which rats were exposed to inescapable shock, and supposedly learned that they were helpless to respond. Research has debunked this interpretation and instead determined that uncontrollable stress can cause cognitive deficits.

Y-maze task

A task in which rats must learn to escape from a Y-shaped maze by making the correct decision. Exposure to uncontrollable stress and the presence of task-irrelevant cues in the maze has been found to impair performance.

Spatial delayed alternation task

A test of spatial working memory for primates or rodents in which the subject is required to make alternate responses on successive trials, with a delay period interposed between trials.

Tuned persistent firing of neurons

The neuronal representation of a specific stimulus — for example, a cue in a specific spatial location. Owing to network connections, a cell can sustain firing without stimulation from the environment, but the sustained firing (in this example) occurs only following a cue to a specific location in space; thus the neuron is 'tuned' to that direction.

Phosphodiesterase

An enzyme that hydrolizes cAMP. Inhibition of phosphodiesterase leads to a build-up in cAMP concentrations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnsten, A. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10, 410–422 (2009). https://doi.org/10.1038/nrn2648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2648

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing