Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Ten years of Nature Reviews Neuroscience: insights from the highly cited

Subjects

Abstract

To celebrate the first 10 years of Nature Reviews Neuroscience, we invited the authors of the most cited article of each year to look back on the state of their field of research at the time of publication and the impact their article has had, and to discuss the questions that might be answered in the next 10 years. This selection of highly cited articles provides interesting snapshots of the progress that has been made in diverse areas of neuroscience. They show the enormous influence of neuroimaging techniques and highlight concepts that have generated substantial interest in the past decade, such as neuroimmunology, social neuroscience and the 'network approach' to brain function. These advancements will pave the way for further exciting discoveries that lie ahead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dorsal and ventral attention networks.

Similar content being viewed by others

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  Google Scholar 

  4. Ng, J. et al. Rac GTPases control axon growth, guidance and branching. Nature 416, 442–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  Google Scholar 

  6. Govek, E. E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Billuart, P., Winter, C. G., Maresh, A., Zhao, X. & Luo, L. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 107, 195–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Nadif Kasri, N. & Van Aelst, L. Rho-linked genes and neurological disorders. Pflugers Arch. 455, 787–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Lamprecht, R., Farb, C. R. & LeDoux, J. E. Fear memory formation involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex. Neuron 36, 727–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Shuai, Y. et al. Forgetting is regulated through Rac activity in Drosophila. Cell 140, 579–589 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci. 2, 229–239 (2001).

    Article  CAS  Google Scholar 

  12. Gray, C. M., König, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez, E. et al. Perception's shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Whittingstall, K. & Logothetis, N. K. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64, 281–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Dalal, S. S. et al. Simultaneous MEG and intracranial EEG recordings during attentive reading. Neuroimage 45, 1289–1304 (2009).

    Article  PubMed  Google Scholar 

  16. Melloni, L. et al. Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cosmelli, D. et al. Waves of consciousness: ongoing cortical patterns during binocular rivalry. Neuroimage 23, 128–140 (2004).

    Article  PubMed  Google Scholar 

  18. Jerbi, K. et al. Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc. Natl Acad. Sci. USA 104, 7676–7681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palva, J. M., Palva, S. & Kaila, K. Phase synchrony among neuronal oscillations in the human cortex. J. Neurosci. 25, 3962–3972 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Canolty, R. T. et al. High γ power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rudrauf, D. et al. Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals. Neuroimage 31, 209–227 (2006).

    Article  PubMed  Google Scholar 

  22. Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. High frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tononi, G. An information integration theory of consciousness. BMC Neurosci. 5, 42 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 11, 2531–2560 (2002).

    Article  Google Scholar 

  25. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  Google Scholar 

  26. Lachaux, J. P. et al. A blueprint for real-time functional mapping via human intracranial recordings. PLoS ONE 2, e1094 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  Google Scholar 

  30. Corbetta, M. et al. Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neurosci. 8, 1603–1610 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. He, B. J. et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Fox, M. D. et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Ruff, C. C. et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16, 1479–1488 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Bressler, S. L. et al. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 28, 10056–10061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Capotosto, P., Babiloni, C., Romani, G. L. & Corbetta, M. Frontoparietal cortex controls spatial attention through modulation of anticipatory α rhythms. J. Neurosci. 29, 5863–5872 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63, 879–888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Douglas, R. J. & Martin, K. A. Mapping the matrix: the ways of neocortex. Neuron 56, 226–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neurosci. 2, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Friston, K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci. 25, 221–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S. & Howlett, A. C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34, 605–613 (1988).

    CAS  PubMed  Google Scholar 

  43. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686–691 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773–778 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Alger, B. E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 68, 247–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Piomelli, D. The molecular logic of endocannabinoid signalling. Nature Rev. Neurosci. 4, 873–884 (2003).

    Article  CAS  Google Scholar 

  49. Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nature Rev. Drug Discov. 7, 438–455 (2008).

    Article  CAS  Google Scholar 

  50. Cannon, W. B. The Wisdom of the Body. (W. W. Norton Co. Inc, New York, 1932).

    Book  Google Scholar 

  51. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  52. Marder, E. & Goaillard, J. M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006).

    Article  CAS  Google Scholar 

  53. Davis, G. W. & Bezprozvanny, I. Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol. 63, 847–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Pozo, K. & Goda, Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Turrigiano, G. G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ibata, K., Sun, Q. & Turrigiano, G. G. Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron 57, 819–826 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Turrigiano, G. G. et al. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Houweling, A. R. et al. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb. Cortex 15, 834–845 (2005).

    Article  PubMed  Google Scholar 

  59. Tononi, G. & Cirelli, C. Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150 (2003).

    Article  PubMed  Google Scholar 

  60. de Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005).

    Article  CAS  Google Scholar 

  61. Goeman, J. J., van de Geer, S. A., de Kort, F. & van Houwelingen, H. C. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20, 93–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Karst, H. et al. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl Acad. Sci. USA 102, 19204–19207 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Karst, H., Berger, S., Erdmann, G., Schütz, G. & Joëls, M. Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc. Natl Acad. Sci. USA 107, 14449–14454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Joëls, M. & Baram T. Z. The neuro-symphony of stress. Nature Rev. Neurosci. 10, 459–466 (2009).

    Article  CAS  Google Scholar 

  65. Rasch, B. et al. A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proc. Natl Acad. Sci. USA 106, 19191–19196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cousijn, H. et al. Acute stress modulates genotype effects on amygdala processing in humans. Proc. Natl Acad. Sci. USA 107, 9867–9872 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwabe, L., Schächinger, H., de Kloet, E. R. & Oitzl, M. S. Corticosteroids operate as a switch between memory systems. J. Cogn. Neurosci. 22, 1362–1372 (2010).

    Article  PubMed  Google Scholar 

  68. Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325, 621–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Bet, P. M. et al. Glucocorticoid receptor gene polymorphisms and childhood adversity are associated with depression: new evidence for a gene-environment interaction. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 660–669 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Binder, E. B. et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299, 1–15 (2008).

    Article  Google Scholar 

  71. Binder, E. B. et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genet. 36, 1319–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Van Rossum, E. F. et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol. Psychiatry 59, 681–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nature Rev. Neurosci. 7, 268–277 (2006).

    Article  CAS  Google Scholar 

  74. Christoff, K. et al. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl Acad. Sci. USA 106, 8719–8724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Delamillieure, P. et al. The resting state questionnaire: an introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Res. Bull. 81, 565–573 (2010).

    Article  PubMed  Google Scholar 

  76. Beckmann, M., Johansen-Berg, H. & Rushworth, M. F. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J. Neurosci. 29, 1175–1190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koechlin, E. & Hyafil, A. Anterior prefrontal function and the limits of human decision-making. Science 318, 594–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Behrens, T. E., Hunt, L. T. & Rushworth, M. F. The computation of social behavior. Science 324, 1160–1164 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Rev. Neurosci. 8, 57–69 (2007).

    Article  CAS  Google Scholar 

  80. Shan, S. et al. NEW evidences for fractalkine/CX3CL1 involved in substantia nigral microglial activation and behavioral changes in a rat model of Parkinson's disease. Neurobiol. Aging 14 Apr 2009 (doi:10.1016/j.neurobiolaging.2009.03.004).

    Article  PubMed  CAS  Google Scholar 

  81. Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nature Neurosci. 9, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, W. et al. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson's disease. Neurotox. Res. 3 Dec 2009 (doi:10.1007/s12640-009-91402011z).

  83. Sulzer, D. et al. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J. Neurochem. 106, 24–36 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Levesque, S. et al. Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 133, 808–821 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hu, X. et al. Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. J. Immunol. 181, 7194–7204 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Fuhrmann, M. et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nature Neurosci. 13, 411–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Skaper, S. D., Debetto, P. & Giusti, P. The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J. 24, 337–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Dinapoli, V. A. et al. Age exaggerates proinflammatory cytokine signaling and truncates signal transducers and activators of transcription 3 signaling following ischemic stroke in the rat. Neuroscience 170, 633–644 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, M. et al. Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J. 24, 2533–2545 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Carvey, P. M., Hendey, B. & Monahan, A. J. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J. Neurochem. 111, 291–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Perry, V. H., Nicoll, J. A. & Holmes, C. Microglia in neurodegenerative disease. Nature Rev. Neurol. 6, 193–201 (2010).

    Article  Google Scholar 

  92. Block, M. L. & Calderon-Garciduenas, L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 32, 506–516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sierra, A., Gottfried-Blackmore, A. C., McEwen, B. S. & Bulloch, K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55, 412–424 (2007).

    Article  PubMed  Google Scholar 

  94. Endres, C. J. et al. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J. Nucl. Med. 50, 1276–1282 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, H., O'Reilly, E. J., Schwarzschild, M. A. & Ascherio, A. Peripheral inflammatory biomarkers and risk of Parkinson's disease. Am. J. Epidemiol. 167, 90–95 (2008).

    Article  PubMed  Google Scholar 

  96. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  Google Scholar 

  97. Dantzer, R. & Kelley, K. W. Twenty years of research on cytokine-induced sickness behavior. Brain Behav. Immun. 21, 153–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Yirmiya, R. et al. Cytokines, 'depression due to a general medical condition,' and antidepressant drugs. Adv. Exp. Med. Biol. 461, 283–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Maes, M. Major depression and activation of the inflammatory response system. Adv. Exp. Med. Biol. 461, 25–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Mellor, A. L. & Munn, D. H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today 20, 469–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. O'Connor, J. C. et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry 14, 511–522 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. O'Connor, J. C. et al. Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J. Immunol. 182, 3202–3212 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Fuchs, D. et al. Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J. Acquir. Immune Defic. Syndr. 3, 873–876 (1990).

    CAS  PubMed  Google Scholar 

  104. Harrison, N. A. et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol. Psychiatry 66, 407–414 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Piser, T. M. Linking the cytokine and neurocircuitry hypotheses of depression: a translational framework for discovery and development of novel anti-depressants. Brain Behav. Immun. 24, 515–524 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  Google Scholar 

  107. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  Google Scholar 

  108. James, W. The Principles of Psychology (Holt, New York, 1890).

    Google Scholar 

  109. Damasio, A. R. Descartes' Error: Emotion, Reason, and the Human Brain (Putnam, New York, 1993).

    Google Scholar 

  110. Dunbar, R. I. & Shultz, S. Evolution in the social brain. Science 317, 1344–1347 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Leonard, W. R., Robertson, M. L., Snodgrass, J. J. & Kuzawa, C. W. Metabolic correlates of hominid brain evolution. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 136, 5–15 (2003).

    Article  PubMed  CAS  Google Scholar 

  112. Craig, A. D. Once an island, now the focus of attention. Brain Struct. Funct. 214, 395–396 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Picard, F. & Craig, A. D. Ecstatic epileptic seizures: a potential window on the neural basis for human self-awareness. Epilepsy Behav. 16, 539–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Asplund, C. L., Todd, J. J., Snyder, A. P. & Marois, R. A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neurosci. 13, 507–512 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.L. thanks support from the National Institutes of Health (NIH) and the Howard Hughes Medical Institute. E.R. was partly supported by the Comisión Nacional de Investigación Científica y Tecnológica and the Deutscher Akademischer Austauschdienst. K.J. and J.P.L. were partly supported by the Fondation pour la Recherche Médicale and by the BrainSync FP7 European Project (grant HEALTH-F2-2008-200728). M.C. and G.L.S. thank S. Astafiev for assistance with figure 1. D.P. gratefully acknowledges support from the National Institute on Drug Abuse and the National Alliance for Research on Schizophrenia and Depression. G.G.T. and S.B.N. thank all members of their laboratories, past and present, as well as the many colleagues and collaborators who have contributed to the genesis of their ideas. E.R.d.K. gratefully acknowledges the support of the Royal Academy of Arts and Sciences (KNAW). D.M.A. is supported by grant BCS 0847350 from the American National Science Foundation and C.D.F. is supported by the Danish National Research Foundation. M.L.B. was supported by the National Institute of Environmental Health Sciences (NIEHS)/NIH Outstanding New Environmental Scientist Award (grant R01ES016951). L.Z. was supported by the Lombardia Region Department of Industry, Project Metadistretti. J.-S. H was partly funded by the Intramural Research Program of the NIEHS (part of the NIH). K.W.K. is supported by the NIH (grant R01 AG 029573) and R.D. is supported by the NIH (grant R01 MH 079829). A.D.C. is grateful to the James S. McDonnell Foundation and to the Barrow Neurological Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Daniele Piomelli is an inventor with several issued patents and patent applications pending covering aspects of endocannabinoid pharmacology. Robert Dantzer has received honorarium from Astra-Zeneca plc, Bristol-Myers Squibb plc and Lundbeck Laboratories. He is also a consultant for Lundbeck Laboratories. Keith W. Kelley has received honorarium from Astra-Zeneca plc. The remaining authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000)

Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci. 2, 229–239 (2001)

Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002)

Piomelli, D. The molecular logic of endocannabinoid signalling. Nature Rev. Neurosci. 4, 873–884 (2003)

Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004)

de Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005)

Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nature Rev. Neurosci. 7, 268–277 (2006)

Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Rev. Neurosci. 8, 57–69 (2007)

Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci. 9, 46–56 (2008)

Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L., Rodriguez, E., Jerbi, K. et al. Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nat Rev Neurosci 11, 718–726 (2010). https://doi.org/10.1038/nrn2912

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing