Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Beyond the role of glutamate as a neurotransmitter

Abstract

Glutamate is the principal excitatory neurotransmitter of the central nervous system, but many studies have expanded its functional repertoire by showing that glutamate receptors are present in a variety of non-excitable cells. How does glutamate receptor activation modulate their activity? Do non-excitable cells release glutamate, and, if so, how? These questions remain enigmatic. Here, we review the current knowledge on glutamatergic signalling in non-neuronal cells, with a special emphasis on astrocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glutamate is a key metabolite.
Figure 2: Compartmentalization of brain glutamate.
Figure 3: Cytosolic glutamate as a potential transmitter pool.
Figure 4: Immunohistochemical detection of glutamate transporters and receptors in peripheral tissue.

Similar content being viewed by others

References

  1. Takano, T. et al. Glutamate release promotes growth of malignant gliomas. Nature Med. 7, 1010–1015 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Rzeski, W., Turks, L. & Ikonomidou, C. Glutamate antagonists limit tumor growth. Proc. Natl Acad. Sci. USA 98, 6372–6377 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bertrand, G., Gross, R., Puech, R., Loubatieres-Mariani, M. M. & Bockaert, J. Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Br. J. Pharmacol. 106, 354–359 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weaver, C. D., Yao, T. L., Powers, A. C. & Verdoorn, T. A. Differential expression of glutamate receptor subtypes in rat pancreatic islets. J. Biol. Chem. 271, 12977–12984 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Patton, A. J., Genever, P. G., Birch, M. A., Suva, L. J. & Skerry, T. M. Expression of an N-methyl-d-aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel glutamate signaling pathway in bone. Bone 22, 645–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Gill, S. S. & Pulido, O. M. Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol. Pathol. 29, 208–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Stryer, L. Biochemistry (W. H. Freeman and Co., New York, 1995).

    Google Scholar 

  8. Hertz, L., Dringen, R., Schousboe, A. & Robinson, S. R. Astrocytes: glutamate producers for neurons. J. Neurosci. Res. 57, 417–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Fitzpatrick, S. M., Cooper, A. J. & Hertz, L. Effects of ammonia and β-methylene-dl-aspartate on the oxidation of glucose and pyruvate by neurons and astrocytes in primary culture. J. Neurochem. 51, 1197–1203 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Osen, K. K., Storm-Mathisen, J., Ottersen, O. P. & Dihle, B. Glutamate is concentrated in and released from parallel fiber terminals in the dorsal cochlear nucleus: a quantitative immunocytochemical analysis in guinea pig. J. Comp. Neurol. 357, 482–500 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Schousboe, A. et al. Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21, 99–105 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Benveniste, H., Drejer, J., Schousboe, A. & Diemer, N. H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Anderson, C. M. & Swanson, R. A. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32, 1–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Auger, C. & Attwell, D. Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28, 547–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Parpura, V. et al. Glutamate-mediated astrocyte–neuron signalling. Nature 369, 744–747 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Jeremic, A., Jeftinija, K., Stevanovic, J., Glavaski, A. & Jeftinija, S. ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J. Neurochem. 77, 664–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Parpura, V. & Haydon, P. G. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc. Natl Acad. Sci. USA 97, 8629–8634 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Araque, A., Li, N., Doyle, R. T. & Haydon, P. G. SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pasti, L., Zonta, M., Pozzan, T., Vicini, S. & Carmignoto, G. Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J. Neurosci. 21, 477–484 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gracy, K. N. & Pickel, V. M. Comparative ultrastructural localization of the NMDAR1 glutamate receptor in the rat basolateral amygdala and bed nucleus of the stria terminalis. J. Comp. Neurol. 362, 71–85 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. McIntosh, D. P. & Schnitzer, J. E. Caveolae require intact VAMP for targeted transport in vascular endothelium. Am. J. Physiol. 277, H2222–H2232 (1999).

    CAS  PubMed  Google Scholar 

  23. Lan, J. Y. et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nature Neurosci. 4, 382–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Prekeris, R., Klumperman, J., Chen, Y. A. & Scheller, R. H. Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell Biol. 143, 957–971 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jo, I., Harris, H. W., Amendt-Raduege, A. M., Majewski, R. R. & Hammond, T. G. Rat kidney papilla contains abundant synaptobrevin protein that participates in the fusion of antidiuretic hormone-regulated water channel-containing endosomes in vitro. Proc. Natl Acad. Sci. USA 92, 1876–1880 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown, D. & Sabolic, I. Endosomal pathways for water channel and proton pump recycling in kidney epithelial cells. J. Cell Sci. 17, (Suppl.)49–59 (1993). |PubMed|

    Article  CAS  Google Scholar 

  27. Skeberdis, V. A., Lan, J., Zheng, X., Zukin, R. S. & Bennett, M. V. Insulin promotes rapid delivery of N-methyl-d-aspartate receptors to the cell surface by exocytosis. Proc. Natl Acad. Sci. USA 98, 3561–3566 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pappas, C. A. & Ransom, B. R. A depolarization-stimulated, bafilomycin-inhibitable H+ pump in hippocampal astrocytes. Glia 9, 280–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Strange, K., Emma, F. & Jackson, P. S. Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270, C711–C730 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Kimelberg, H., Goderie, S., Higman, S., Pang, S. & Waniewski, R. Swelling-induced release of glutamate, aspartate, and taurine from astrocytic cultures. J. Neurosci. 10, 1583–1591 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Junankar, P. R. & Kirk, K. Organic osmolyte channels: a comparative view. Cell. Physiol. Biochem. 10, 355–360 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Eggermont, J., Trouet, D., Carton, I. & Nilius, B. Cellular function and control of volume-regulated anion channels. Cell. Biochem. Biophys. 35, 263–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Hansson, E. Metabotropic glutamate receptor activation induces astroglial swelling. J. Biol. Chem. 269, 21955–21961 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Hansson, E., Johansson, B. B., Westergren, I. & Ronnback, L. Glutamate-induced swelling of single astroglial cells in primary culture. Neuroscience 63, 1057–1066 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Koyama, Y. et al. Transient treatments with l-glutamate and threo-β-hydroxyaspartate induce swelling of rat cultured astrocytes. Neurochem. Int. 36, 167–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Barbour, B., Brew, H. & Attwell, D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335, 433–435 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Rossi, D. J., Oshima, T. & Attwell, D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403, 316–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Hansen, A. J. & Nedergaard, M. Brain ion homeostasis in cerebral ischemia. Neurochem. Pathol. 9, 195–209 (1988).

    CAS  PubMed  Google Scholar 

  39. Warr, O., Takahashi, M. & Attwell, D. Modulation of extracellular glutamate concentration in rat brain slices by cystine–glutamate exchange. J. Physiol. (Lond.) 514, 783–793 (1999).

    Article  CAS  Google Scholar 

  40. Ye, Z. C., Rothstein, J. D. & Sontheimer, H. Compromised glutamate transport in human glioma cells: reduction–mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine–glutamate exchange. J. Neurosci. 19, 10767–10777 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bowman, C. L. & Kimelberg, H. K. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311, 656–659 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Kettenmann, H., Backus, K. H. & Schachner, M. Aspartate, glutamate and γ-aminobutyric acid depolarize cultured astrocytes. Neurosci. Lett. 52, 25–29 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Aoki, C., Venkatesan, C., Go, C. G., Mong, J. A. & Dawson, T. M. Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. J. Neurosci. 14, 5202–5222 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Janssens, N. & Lesage, A. S. Glutamate receptor subunit expression in primary neuronal and secondary glial cultures. J. Neurochem. 77, 1457–1474 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Spreafico, R. et al. Distribution of AMPA selective glutamate receptors in the thalamus of adult rats and during postnatal development. A light and ultrastructural immunocytochemical study. Brain Res. Dev. Brain Res. 82, 231–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Fan, D. et al. AMPA receptor protein expression and function in astrocytes cultured from hippocampus. J. Neurosci. Res. 57, 557–571 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Seifert, G., Rehn, L., Weber, M. & Steinhauser, C. AMPA receptor subunits expressed by single astrocytes in the juvenile mouse hippocampus. Brain Res. Mol. Brain Res. 47, 286–294 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Diano, S., Naftolin, F. & Horvath, T. L. Kainate glutamate receptors (GluR5–7) in the rat arcuate nucleus: relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors. J. Neuroendocrinol. 10, 239–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Ulas, J. et al. Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Glia 30, 352–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Schools, G. P. & Kimelberg, H. K. mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J. Neurosci. Res. 58, 533–543 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Balazs, R. et al. Metabotropic glutamate receptor mGluR5 in astrocytes: pharmacological properties and agonist regulation. J. Neurochem. 69, 151–163 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Porter, J. T. & McCarthy, K. D. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i . Glia 13, 101–112 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Steinhauser, C., Jabs, R. & Kettenmann, H. Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4, 19–35 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Sontheimer, H., Kettenmann, H., Backus, K. H. & Schachner, M. Glutamate opens Na+/K+ channels in cultured astrocytes. Glia 1, 328–336 (1988).

    Article  CAS  PubMed  Google Scholar 

  55. Verkhratsky, A., Orkand, R. K. & Kettenmann, H. Glial calcium: homeostasis and signaling function. Physiol. Rev. 78, 99–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Iino, M. et al. Glia–synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292, 926–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ye, Z. C. & Sontheimer, H. Metabotropic glutamate receptor agonists reduce glutamate release from cultured astrocytes. Glia 25, 270–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Enkvist, M. O. & McCarthy, K. D. Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J. Neurochem. 62, 489–495 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Gadea, A. & Lopez-Colome, A. M. Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. J. Neurosci. Res. 63, 453–460 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Rothstein, J. D. et al. Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Bar-Peled, O. et al. Distribution of glutamate transporter subtypes during human brain development. J. Neurochem. 69, 2571–2580 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Conti, F., DeBiasi, S., Minelli, A., Rothstein, J. D. & Melone, M. EAAC1, a high-affinity glutamate transporter, is localized to astrocytes and GABAergic neurons besides pyramidal cells in the rat cerebral cortex. Cereb. Cortex 8, 108–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Amara, S. G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl Acad. Sci. USA 94, 4155–4160 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wadiche, J. I., Amara, S. G. & Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Rothstein, J. D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Oliet, S. H., Piet, R. & Poulain, D. A. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292, 923–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Meldrum, B. S. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S–1015S (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kanai, Y. & Hediger, M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467–471 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Mukainaka, Y., Tanaka, K., Hagiwara, T. & Wada, K. Molecular cloning of two glutamate transporter subtypes from mouse brain. Biochim. Biophys. Acta 1244, 233–237 (1995).

    Article  PubMed  Google Scholar 

  73. Howell, J. A., Matthews, A. D., Swanson, K. C., Harmon, D. L. & Matthews, J. C. Molecular identification of high-affinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas. J. Anim. Sci. 79, 1329–1336 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Hanley, D. F. & Varelas, P. Glutamate in parenteral nutrition. Crit. Care Med. 27, 2319–2320 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Gill, S. S., Pulido, O. M., Mueller, R. W. & McGuire, P. F. Immunochemical localization of the metabotropic glutamate receptors in the rat heart. Brain Res. Bull. 48, 143–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Genever, P. G. et al. Expression of a functional N-methyl-d-aspartate-type glutamate receptor by bone marrow megakaryocytes. Blood 93, 2876–2883 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, H. P., Tay, S. S. & Leong, S. K. Localization of glutamate receptor subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type in the pancreas of newborn guinea pigs. Pancreas 14, 360–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Sureda, F. et al. Metabotropic glutamate receptor agonists stimulate polyphosphoinositide hydrolysis in primary cultures of rat hepatocytes. Eur. J. Pharmacol. 338, R1–R2 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Purcell, W. M., Doyle, K. M., Westgate, C. & Atterwill, C. K. Characterisation of a functional polyamine site on rat mast cells: association with a NMDA receptor macrocomplex. J. Neuroimmunol. 65, 49–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Shannon, H. E. & Sawyer, B. D. Glutamate receptors of the N-methyl-d-aspartate subtype in the myenteric plexus of the guinea pig ileum. J. Pharmacol. Exp. Ther. 251, 518–523 (1989).

    CAS  PubMed  Google Scholar 

  81. Lombardi, G., Dianzani, C., Miglio, G., Canonico, P. L. & Fantozzi, R. Characterization of ionotropic glutamate receptors in human lymphocytes. Br. J. Pharmacol. 133, 936–944 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Chatterton, J. E. et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415, 793–798 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Nahum-Levy, R., Lipinski, D., Shavit, S. & Benveniste, M. Desensitization of NMDA receptor channels is modulated by glutamate agonists. Biophys. J. 80, 2152–2166 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liang, F. & Huganir, R. L. Coupling of agonist-induced AMPA receptor internalization with receptor recycling. J. Neurochem. 77, 1626–1631 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Zipfel, G. J., Babcock, D. J., Lee, J. M. & Choi, D. W. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J. Neurotrauma 17, 857–869 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Tekkok, S. B. & Goldberg, M. P. AMPA/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J. Neurosci. 21, 4237–4248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. David, J. C., Yamada, K. A., Bagwe, M. R. & Goldberg, M. P. AMPA receptor activation is rapidly toxic to cortical astrocytes when desensitization is blocked. J. Neurosci. 16, 200–209 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sattler, R., Xiong, Z., Lu, W. Y., MacDonald, J. F. & Tymianski, M. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J. Neurosci. 20, 22–33 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hardingham, G. E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature Neurosci. 5, 405–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, G. Q., Cui, C., Mayer, M. L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Stuhmer, T. et al. Structure and pharmacological properties of a molluscan glutamate-gated cation channel and its likely role in feeding behavior. J. Neurosci. 16, 2869–2880 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brockie, P. J., Mellem, J. E., Hills, T., Madsen, D. M. & Maricq, A. V. The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31, 617–630 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Lam, H. M. et al. Glutamate-receptor genes in plants. Nature 396, 125–126 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Harvey, R. J., Vreugdenhil, E., Barnard, E. A. & Darlison, M. G. Cloning of genomic and cDNA sequences encoding an invertebrate γ-aminobutyric acidA receptor subunit. Biochem. Soc. Trans. 18, 438–439 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Richmond, J. E. & Jorgensen, E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nature Neurosci. 2, 791–797 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Calver, A. R. et al. The expression of GABAB1 and GABAB2 receptor subunits in the CNS differs from that in peripheral tissues. Neuroscience 100, 155–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Araque, A., Carmignoto, G. & Haydon, P. G. Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63, 795–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Obrenovitch, T. P. & Zilkha, E. Microdialysis coupled to online enzymatic assays. Methods 23, 63–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Kohno, T. et al. An improved method for the detection of changes in brain extracellular glutamate levels. J. Neurosci. Methods 81, 199–205 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Benveniste, H. & Huttemeier, P. C. Microdialysis — theory and application. Prog. Neurobiol. 35, 195–215 (1990).

    Article  CAS  PubMed  Google Scholar 

  102. Fonnum, F. in Glutamate and Glutamine in Mammals (ed. Kvamme, E.) (CRC, Boca Raton, Florida, 1988).

    Google Scholar 

  103. Innocenti, B., Parpura, V. & Haydon, P. G. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J. Neurosci. 20, 1800–1808 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fosse, V. M., Kolstad, J. & Fonnum, F. A bioluminescence method for the measurement of l-glutamate: applications to the study of changes in the release of l-glutamate from lateral geniculate nucleus and superior colliculus after visual cortex ablation in rats. J. Neurochem. 47, 340–349 (1986).

    Article  CAS  PubMed  Google Scholar 

  105. Allen, T. G. The 'sniffer-patch' technique for detection of neurotransmitter release. Trends Neurosci. 20, 192–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Luscher, C., Malenka, R. C. & Nicoll, R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron 21, 435–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bergles, D. E. & Jahr, C. E. Glial contribution to glutamate uptake at Schaffer collateral–commissural synapses in the hippocampus. J. Neurosci. 18, 7709–7716 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lin, C. I. et al. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410, 84–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Jackson, M. et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410, 89–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Bergles, D. E., Diamond, J. S. & Jahr, C. E. Clearance of glutamate inside the synapse and beyond. Curr. Opin. Neurobiol. 9, 293–298 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Gallo, V. & Chittajallu, R. Neuroscience. Unwrapping glial cells from the synapse: what lies inside? Science 292, 872–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Hatton, G. I. Function-related plasticity in hypothalamus. Annu. Rev. Neurosci. 20, 375–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Zisapel, N. & Zurgil, N. Studies on synaptic vesicles in mammalian brain characterization of highly purified synaptic vesicles from bovine cerebral cortex. Brain Res. 178, 297–310 (1979).

    Article  CAS  PubMed  Google Scholar 

  116. Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci. 1, 683–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Duffy, S. & MacVicar, B. A. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci. 15, 5535–5550 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shelton, M. K. & McCarthy, K. D. Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J. Neurochem. 74, 555–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Jalonen, T. O. et al. Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res. 758, 69–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Parri, H. R., Gould, T. M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nature Neurosci. 4, 803–812 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Nett, W. J., Oloff, S. H. & McCarthy, K. D. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87, 528–537 (2002).

    Article  PubMed  Google Scholar 

  122. Olney, J. W. The toxic effects of glutamate and related compounds in the retina and the brain. Retina 2, 341–359 (1982).

    Article  CAS  PubMed  Google Scholar 

  123. Vina, J. R., DeJoseph, M. R., Hawkins, P. A. & Hawkins, R. A. Penetration of glutamate into brain of 7-day-old rats. Metab. Brain Dis. 12, 219–227 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by NIEDH-NIH grants to M.N. We thank A. Cooper, G. M. Knudsen, G. Dienel and A. Schouboe for useful comments, X. Wang for the immunohistochemical analysis of glutamate receptor expression, and J. Rothstein for glutamate transporter antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiken Nedergaard.

Related links

Related links

DATABASES

LocusLink

EAAT1

EAAT2

EAAT3

EAAT4

EAAT5

GluR1–4

GluR5–7

glutamate dehydrogenase

glutamine synthetase

mGluR2

mGluR3

mGluR5

NR1

NR2A

NR2B

NR3A

NR3B

OMIM

multiple sclerosis

FURTHER INFORMATION

Encyclopedia of Life Sciences

amino acid transporters

AMPA receptors

astrocytes and brain signalling

glutamate as a neurotransmitter

metabotropic glutamate receptors

NMDA receptors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedergaard, M., Takano, T. & Hansen, A. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3, 748–755 (2002). https://doi.org/10.1038/nrn916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn916

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing