Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases

Abstract

The 50 kDa glycoprotein plasminogen activator inhibitor 1 (PAI-1) is the major physiological inhibitor of tissue-type and urokinase-type plasminogen activator. These two molecules convert inactive plasminogen into its fibrin-degrading form, plasmin. Plasma and tissue concentrations of PAI-1 are extremely low under normal circumstances but increase under pathologic conditions. This increase is mediated by many factors, including reactive oxygen species. Increased PAI-1 activity is associated with an increased risk of ischemic cardiovascular events and tissue fibrosis. Whereas the antifibrinolytic property of PAI-1 derives mainly from its inhibition of serine proteases, its profibrotic actions seem to derive from a capacity to stimulate interstitial macrophage recruitment and increase transcription of profibrotic genes, as well as from inhibition of serine proteases. Despite studies in mice that lack or overexpress PAI-1, the biological effects of this molecule in humans remain incompletely understood because of the complexity of the PAI-1–plasminogen-activator–plasmin system. The cardioprotective and renoprotective properties of some currently available drugs might be attributable in part to inhibition of PAI-1. The development of an orally active, high-affinity PAI-1 inhibitor will provide a potentially important pharmacological tool for further investigation of the role of PAI-1 and might offer a novel therapeutic strategy in renal and cardiovascular diseases.

Key Points

  • Plasminogen activator inhibitor 1 (PAI-1) is an antifibrinolytic and profibrotic protein; its antifibrinolytic properties derive mainly from inhibition of serine protease activity

  • The mechanisms of PAI-1's profibrotic action are complex; in addition to inhibiting serine proteases, PAI-1 might promote interstitial macrophage recruitment and exert direct cellular effects through binding the urokinase-type plasminogen activator receptor

  • Improved understanding of the signaling pathways involved in PAI-1-induced gene transcription will aid the development of novel therapeutic strategies for ischemic and fibrotic diseases

  • Several currently available renoprotective drugs have PAI-1 inhibitory activity; development of an orally active, specific PAI-1 inhibitor could provide a pharmacological tool for investigating the role of PAI-1 and might have therapeutic potential

  • Reactive oxygen species have a role in the upregulation of PAI-1; therefore, the efficacy of antioxidants in the treatment and prevention of ischemic cardiovascular disease and renal fibrosis warrants investigation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of active human plasminogen activator inhibitor 1.
Figure 2: Potential mechanisms of plasminogen activator inhibitor 1 upregulation by transforming growth factor β1.
Figure 3: Proposed roles of plasminogen activator inhibitor 1 in vascular disease and fibrosis.

Similar content being viewed by others

References

  1. Wiman, B. & Collen, D. Purification and characterization of human antiplasmin, the fast-acting plasmin inhibitor in plasma. Eur. J. Biochem. 78, 19–26 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Eddy, A. A. & Fogo, A. B. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J. Am. Soc. Nephrol 17, 2999–3012 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, R. M. Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid. Redox Signal. 10, 303–319 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Vaughan, D. E. et al. PAI-1 antagonists: predictable indications and unconventional applications. Curr. Drug Targets 8, 962–970 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hoffstedt, J. et al. The common -675 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene is strongly associated with obesity. Diabetologia 45, 584–587 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Lundgren, C. H. et al. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation 93, 106–110 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Stefansson, S. et al. Plasminogen activator inhibitor-1 in tumor growth, angiogenesis and vascular remodeling. Curr. Pharm. Des. 9, 1545–1564 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Myohanen, H. & Vaheri, A. Regulation and interactions in the activation of cell-associated plasminogen. Cell. Mol. Life Sci. 61, 2840–2858 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Cesarman-Maus, G. & Hajjar, K. A. Molecular mechanisms of fibrinolysis. Br. J. Haematol. 129, 307–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Cale, J. M. & Lawrence, D. A. Structure–function relationships of plasminogen activator inhibitor-1 and its potential as a therapeutic agent. Curr. Drug Targets 8, 971–981 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Andreotti, F. et al. Major circadian fluctuations in fibrinolytic factors and possible relevance to time of onset of myocardial infarction, sudden cardiac death and stroke. Am. J. Cardiol. 62, 635–637 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Angleton, P. et al. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 79, 101–106 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Muller, J. E. et al. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79, 733–743 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Kurnik, P. B. Circadian variation in the efficacy of tissue-type plasminogen activator. Circulation 91, 1341–1346 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Massague, J. The transforming growth factor-β family. Annu. Rev. Cell Biol. 6, 597–641 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Irigoyen, J. P. et al. The plasminogen activator system: biology and regulation. Cell. Mol. Life Sci. 56, 104–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Bosma, P. J. et al. Human plasminogen activator inhibitor-1 gene. Promoter and structural gene nucleotide sequence. J. Biol. Chem. 263, 9129–9141 (1988).

    CAS  PubMed  Google Scholar 

  18. Klinger, K. W. et al. Plasminogen activator inhibitor type 1 gene is located at region q21.3–q22 of chromosome 7 and genetically linked with cystic fibrosis. Proc. Natl Acad. Sci. USA 84, 8548–8552 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bruzdzinski, C. J. et al. Isolation and characterization of the rat plasminogen activator inhibitor-1 gene. J. Biol. Chem. 265, 2078–2085 (1990).

    CAS  PubMed  Google Scholar 

  20. Prendergast, G. C. et al. The c-myc-regulated gene mrl encodes plasminogen activator inhibitor 1. Mol. Cell Biol. 10, 1265–1269 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keeton, M. R. et al. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J. Biol. Chem. 266, 23048–23052 (1991).

    CAS  PubMed  Google Scholar 

  22. Dawson, S. J. et al. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J. Biol. Chem. 268, 10739–10745 (1993).

    CAS  PubMed  Google Scholar 

  23. Chen, Y. Q. et al. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J. Biol. Chem. 273, 8225–8231 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Dennler, S. et al. Direct binding of Smad3 and Smad4 to critical TGF β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091–3100 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fink, T. et al. Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 99, 2077–2083 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Dawson, S. et al. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. Arterioscler. Thromb. Vasc. Biol. 11, 183–190 (1991).

    Article  CAS  Google Scholar 

  27. Eriksson, P. et al. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc. Natl Acad. Sci. USA 92, 1851–1855 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lane, D. A. & Grant, P. J. Role of hemostatic gene polymorphism in venous and arterial thrombotic disease. Blood 95, 1517–1532 (2000).

    CAS  PubMed  Google Scholar 

  29. Wong, T. Y. et al. Association of plasminogen activator inhibitor-1 4G/4G genotype and type 2 diabetic nephropathy in Chinese patients. Kidney Int. 57, 632–638 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, E. A. et al. Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int. 67, 1762–1771 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Jiang, Z. et al. Reactive oxygen species mediate TGF-β1-induced plasminogen activator inhibitor-1 upregulation in mesangial cells. Biochem. Biophys. Res. Commun. 309, 961–966 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Liao, H. et al. Molecular regulation of the PAI-1 gene by hypoxia: contributions of Egr-1, HIF-1α, and C/EBPα. FASEB J. 21, 935–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Sakamoto, T. et al. TNF-α and insulin, alone and synergistically, induce plasminogen activator inhibitor-1 expression in adipocytes. Am. J. Physiol. 276, C1391–C1397 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Yoshimoto, T. et al. Antioxidant effect of adrenomedullin on angiotensin II-induced reactive oxygen species generation in vascular smooth muscle cells. Endocrinology 145, 3331–3337 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Yoshimoto, T. et al. Adrenomedullin inhibits angiotensin II-induced oxidative stress and gene expression in rat endothelial cells. Hypertens. Res. 28, 165–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Vayalil, P. K. et al. Glutathione suppresses TGF-β-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L1281–L1292 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Rhyu, D. Y. et al. Role of reactive oxygen species in TGF-β1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J. Am. Soc. Nephrol. 16, 667–675 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Manna, S. K. et al. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-κB and activated protein-1. J. Biol. Chem. 273, 13245–13254 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Brown, N. J. et al. Modulation of angiotensin II and norepinephrine-induced plasminogen activator inhibitor-1 expression by AT1a receptor deficiency. Kidney Int. 72, 72–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Brown, N. J. et al. Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo. Kidney Int. 58, 1219–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Brown, N. J. et al. Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J. Clin. Endocrinol. Metab. 85, 336–344 (2000).

    CAS  PubMed  Google Scholar 

  42. Ma, L. J. et al. TGF-β dependent and –independent pathways of induction of tubulointerstitial fibrosis in β6−/− mice. Am. J. Pathol. 163, 1261–1273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goff, D. C., Jr et al. Essential features of a surveillance system to support the prevention and management of heart disease and stroke: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Stroke, and Cardiovascular Nursing and the Interdisciplinary Working Groups on Quality of Care and Outcomes Research and Atherosclerotic Peripheral Vascular Disease. Circulation 115, 127–155 (2007).

    Article  PubMed  Google Scholar 

  44. Ford, E. S. et al. Sedentary behavior, physical activity, and the metabolic syndrome among, U.S. adults. Obes. Res. 13, 608–614 (2005).

    Article  PubMed  Google Scholar 

  45. Erickson, L. A. et al. Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature 346, 74–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Eren, M. et al. Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation 106, 491–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Peng, L. et al. Endogenous vitronectin and plasminogen activator inhibitor-1 promote neointima formation in murine carotid arteries. Arterioscler. Thromb. Vasc. Biol. 22, 934–939 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Carmeliet, P. et al. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 96, 3180–3191 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Otsuka, G. et al. Transforming growth factor β1 induces neointima formation through plasminogen activator inhibitor-1-dependent pathways. Arterioscler. Thromb. Vasc. Biol. 26, 737–743 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. de Waard, V. et al. Plasminogen activator inhibitor 1 and vitronectin protect against stenosis in a murine carotid artery ligation model. Arterioscler. Thromb. Vasc. Biol. 22, 1978–1983 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Lijnen, H. R. et al. Neointima formation and thrombosis after vascular injury in transgenic mice overexpressing plasminogen activator inhibitor-1 (PAI-1). J. Thromb. Haemost. 2, 16–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Alexander, C. M. et al. Proteinases and extracellular matrix remodeling. Curr. Opin. Cell Biol. 1, 974–982 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Stefansson, S. et al. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 383, 441–443 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, Y. et al. Augmentation of proliferation of vascular smooth muscle cells by plasminogen activator inhibitor type 1. Arterioscler. Thromb. Vasc. Biol. 26, 1777–1783 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kwaan, H. C. et al. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br. J. Cancer 82, 1702–1708 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fay, W. P. Plasminogen activator inhibitor 1, fibrin, and the vascular response to injury. Trends Cardiovasc. Med. 14, 196–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Sjoland, H. et al. Atherosclerosis progression in LDL receptor-deficient and apolipoprotein E-deficient mice is independent of genetic alterations in plasminogen activator inhibitor-1. Arterioscler. Thromb. Vasc. Biol. 20, 846–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Eitzman, D. T. et al. Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood 96, 4212–4215 (2000).

    CAS  PubMed  Google Scholar 

  59. Luttun, A. et al. Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling of advanced atherosclerotic plaques in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 22, 499–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Prisco, D. et al. Postprocedural PAI-1 activity is a risk marker of subsequent clinical restenosis in patients both with and without stent implantation after elective balloon PTCA. Thromb. Res. 104, 181–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Strauss, B. H. et al. Plasma urokinase antigen and plasminogen activator inhibitor-1 antigen levels predict angiographic coronary restenosis. Circulation 100, 1616–1622 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Christ, G. et al. Predictive value of plasma plasminogen activator inhibitor-1 for coronary restenosis: dependence on stent implantation and antithrombotic medication. J. Thromb. Haemost. 3, 233–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Rondeau, E. et al. Plasminogen activator inhibitor 1 in renal fibrin deposits of human nephropathies. Clin. Nephrol. 33, 55–60 (1990).

    CAS  PubMed  Google Scholar 

  64. Nakamura, T. The localization of plasminogen activator inhibitor-1 in glomerular subepithelial deposits in membranous nephropathy. J. Am. Soc. Nephrol. 7, 2434–2444 (1996).

    CAS  PubMed  Google Scholar 

  65. Hamano, K. et al. Expression of glomerular plasminogen activator inhibitor type I in glomerulonephritis. Am. J. Kidney Dis. 39, 695–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Paueksakon, P. et al. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int. 61, 2142–2148 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Gesualdo, L. et al. Angiotensin IV stimulates plasminogen activator inhibitor-1 expression in proximal tubular epithelial cells. Kidney Int. 56, 461–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Matsuo, S. et al. Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int. 67, 2221–2238 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Haraguchi, M. et al. t-PA promotes glomerular plasmin generation and matrix degradation in experimental glomerulonephritis. Kidney Int. 59, 2146–2155 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, H. B. et al. Suppression of plasminogen activator inhibitor-1 inhibits high glucose- and TGF-β1-induced fibronectin secretion and increases MMP2 activity by mesnagial cells [Abstract]. J. Am. Soc. Nephrol. 13, 169A (2002).

    Article  CAS  Google Scholar 

  71. Oda, T. et al. PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int. 60, 587–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Kitching, A. R. et al. Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 14, 1487–1495 (2003).

    Article  PubMed  Google Scholar 

  73. Huang, Y. et al. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J. Clin. Invest. 112, 379–388 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma, L. J. et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 53, 336–346 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Collins, S. J. et al. Plasminogen activator inhibitor-1 deficiency has renal benefits but some adverse systemic consequences in diabetic mice. Nephron Exp. Nephrol. 104, e23–e34 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, J. et al. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J. Clin. Invest. 110, 1525–1538 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nicholas, S. B. et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 67, 1297–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Lyons, R. M. et al. Mechanism of activation of latent recombinant transforming growth factor β1 by plasmin. J. Cell Biol. 110, 1361–1367 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Hertig, A. et al. Type 1 plasminogen activator inhibitor deficiency aggravates the course of experimental glomerulonephritis through overactivation of transforming growth factor beta. FASEB J. 17, 1904–1906 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Edgtton, K. L. et al. Plasmin is not protective in experimental renal interstitial fibrosis. Kidney Int. 66, 68–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Preissner, K. T. et al. Urokinase receptor: a molecular organizer in cellular communication. Curr. Opin. Cell Biol. 12, 621–628 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Degryse, B. et al. The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J. Biol. Chem. 279, 22595–22604 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Nykjaer, A. et al. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic α2-macroglobulin receptor/low density lipoprotein receptor-related protein. Evidence that the urokinase receptor protects pro-urokinase against binding to the endocytic receptor. J. Biol. Chem. 269, 25668–25676 (1994).

    CAS  PubMed  Google Scholar 

  84. Biemond, B. J. et al. Thrombolysis and reocclusion in experimental jugular vein and coronary artery thrombosis. Effects of a plasminogen activator inhibitor type 1-neutralizing monoclonal antibody. Circulation 91, 1175–1181 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. van Giezen, J. J. et al. The Fab-fragment of a PAI-1 inhibiting antibody reduces thrombus size and restores blood flow in a rat model of arterial thrombosis. Thromb. Haemost. 77, 964–969 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Fay, W. P. et al. Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood 90, 204–208 (1997).

    CAS  PubMed  Google Scholar 

  87. Izuhara, Y. et al. Inhibition of plasminogen activator inhibitor-1: its mechanism and effectiveness on coagulation and fibrosis. Arterioscler. Thromb. Vasc. Biol. 28, 672–677 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Leik, C. E. et al. Effect of pharmacologic plasminogen activator inhibitor-1 inhibition on cell motility and tumor angiogenesis. J. Thromb. Haemost. 4, 2710–2715 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Gorlatova, N. V. et al. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor. J. Biol. Chem. 282, 9288–9296 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Elokdah, H. et al. Tiplaxtinin, a novel, orally efficacious inhibitor of plasminogen activator inhibitor-1: design, synthesis, and preclinical characterization. J. Med. Chem. 47, 3491–3494 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Hennan, J. K. et al. Evaluation of PAI-039 [{1-benzyl-5-[4-(trifluoromethoxy)phenyl]-1H-indol-3-yl}(oxo)acetic acid], a novel plasminogen activator inhibitor-1 inhibitor, in a canine model of coronary artery thrombosis. J. Pharmacol. Exp. Ther. 314, 710–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Weisberg, A. D. et al. Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling. Arterioscler. Thromb. Vasc. Biol. 25, 365–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Crandall, D. L. et al. Modulation of adipose tissue development by pharmacological inhibition of PAI-1. Arterioscler. Thromb. Vasc. Biol. 26, 2209–2215 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Liang, A. et al. Characterization of a small molecule PAI-1 inhibitor, ZK4044. Thromb. Res. 115, 341–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Crandall, D. L. et al. WAY-140312 reduces plasma PAI-1 while maintaining normal platelet aggregation. Biochem. Biophys. Res. Commun. 311, 904–908 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Vaughan, D. E. et al. Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. HEART Study Investigators. Circulation 96, 442–447 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Fogari, R. & Zoppi, A. Antihypertensive drugs and fibrinolytic function. Am. J. Hypertens. 19, 1293–1299 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, N. et al. Angiotensin II receptor blockade ameliorates mesangioproliferative glomerulonephritis in rats through suppression of CTGF and PAI-1, independently of the coagulation system. Nephron Exp. Nephrol. 105, e65–e74 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Oikawa, T. et al. Modulation of plasminogen activator inhibitor-1 in vivo: a new mechanism for the anti-fibrotic effect of renin-angiotensin inhibition. Kidney Int. 51, 164–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Skurk, T. & Hauner, H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int. J. Obes. Relat. Metab. Disord. 28, 1357–1364 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Hoo, R. L. et al. Adiponectin mediates the suppressive effect of rosiglitazone on plasminogen activator inhibitor-1 production. Arterioscler. Thromb. Vasc. Biol. 27, 2777–2782 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Zambrana, J. L. et al. Comparison of bezafibrate versus lovastatin for lowering plasma insulin, fibrinogen, and plasminogen activator inhibitor-1 concentrations in hyperlipemic heart transplant patients. Am. J. Cardiol. 80, 836–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Song, C. Y. et al. Lovastatin inhibits oxidized low-density lipoprotein-induced plasminogen activator inhibitor and transforming growth factor-β1 expression via a decrease in Ras/extracellular signal-regulated kinase activity in mesangial cells. Transl. Res. 151, 27–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, L. et al. Simvastatin reduces circulating plasminogen activator inhibitor 1 activity in volunteers with the metabolic syndrome. Metab. Syndr. Relat. Disord. 6, 149–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grafe, M. et al. Human cardiac microvascular and macrovascular endothelial cells respond differently to oxidatively modified LDL. Atherosclerosis 137, 87–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Bonfigli, A. R. et al. Vitamin E intake reduces plasminogen activator inhibitor type 1 in T2DM patients. Diabetes Nutr. Metab. 14, 71–77 (2001).

    CAS  PubMed  Google Scholar 

  107. Uchida, Y. et al. Cellular carbonyl stress enhances the expression of plasminogen activator inhibitor-1 in rat white adipocytes via reactive oxygen species-dependent pathway. J. Biol. Chem. 279, 4075–4083 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Marx, N. et al. PPARγ activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARγ as a potential mediator in vascular disease. Arterioscler. Thromb. Vasc. Biol. 19, 546–551 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Korea Research Foundation (#E00014), the Korea Science and Engineering Foundation (#ROI-2006-000-10829-0 and #R15-2006-020), and the second stage of Brain Korea 21 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hi B. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, H., Oh, E. & Lee, H. The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nat Rev Nephrol 5, 203–211 (2009). https://doi.org/10.1038/nrneph.2009.15

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing