Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Can Alzheimer disease be prevented by amyloid-β immunotherapy?

A Correction to this article was published on 01 June 2010

A Correction to this article was published on 01 April 2010

Abstract

Alzheimer disease (AD) is the most common form of dementia. The amyloid-β (Aβ) peptide has become a major therapeutic target in AD on the basis of pathological, biochemical and genetic evidence that supports a role for this molecule in the disease process. Active and passive Aβ immunotherapies have been shown to lower cerebral Aβ levels and improve cognition in animal models of AD. In humans, dosing in the phase II clinical trial of the AN1792 Aβ vaccine was stopped when 6% of the immunized patients developed meningoencephalitis. However, some plaque clearance and modest clinical improvements were observed in patients following immunization. As a result of this study, at least seven passive Aβ immunotherapies are now in clinical trials in patients with mild to moderate AD. Several second-generation active Aβ vaccines are also in early clinical trials. On the basis of preclinical studies and the limited data from clinical trials, Aβ immunotherapy might be most effective in preventing or slowing the progression of AD when patients are immunized before or in the very earliest stages of disease onset. Biomarkers for AD and imaging technology have improved greatly over the past 10 years and, in the future, might be used to identify presymptomatic, at-risk individuals who might benefit from Aβ immunization.

Key Points

  • Preclinical studies support the idea that Alzheimer disease (AD) can be prevented by amyloid-β (Aβ) immunotherapies

  • Adverse events, but some efficacy, were observed in clinical trials of the AN1792 Aβ vaccine and the passive Aβ immunotherapy bapineuzumab

  • At least 13 Aβ immunotherapies are in clinical trials in patients with mild to moderate AD

  • Second-generation Aβ vaccines that avoid the adverse events observed with AN1792 and improve antibody generation might improve Aβ immunotherapy efficacy

  • Aβ immunization might be considerably more efficacious in AD if administered before Aβ aggregation, thereby protecting the brain from downstream neurodegenerative effects

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active and passive immunization approaches.
Figure 2: Neuropathological findings in an AN1792-immunized patient with Alzheimer disease.

Similar content being viewed by others

References

  1. Brookmeyer, R., Johnson, E., Ziegler-Graham, K. & Arrighi, H. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 3, 186–191 (2007).

    Article  PubMed  Google Scholar 

  2. Dickson, D. W. The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56, 321–339 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Wolfe, M. S. Shutting down Alzheimer's. Sci. Am. 294, 72–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Klein, W. Aβ toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem. Int. 41, 345–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Walsh, D. M. & Selkoe, D. J. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44, 181–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. ClinicalTrials.gov [online], (2009).

  9. Solomon, B., Koppel, R., Hanan, E. & Katzav, T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl Acad. Sci. USA 93, 452–455 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Solomon, B., Koppel, R., Frenkel, D. & Hanan-Aharon, E. Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl Acad. Sci. USA 94, 4109–4112 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Lemere, C. A. et al. Nasal Aβ treatment induces anti-Aβ antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann. NY Acad. Sci. 920, 328–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Weiner, H. L. et al. Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Ann. Neurol. 48, 567–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Das, P., Murphy, M., Younkin, L., Younkin, S. & Golde, T. Reduced effectiveness of Aβ1–42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol. Aging 22, 721–727 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B. & Wisniewski, T. Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer's disease-associated pathology in transgenic mice. Am. J. Pathol. 159, 439–447 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maier, M. et al. Short amyloid-β (Aβ) immunogens reduce cerebral Aβ load and learning deficits in an Alzheimer's disease mouse model in the absence of an Aβ-specific cellular immune response. J. Neurosci. 26, 4717–4728 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Oddo, S. et al. Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J. Biol. Chem. 281, 39413–39423 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Head, E. et al. A two-year study with fibrillar β-amyloid (Aβ) immunization in aged canines: effects on cognitive function and brain Aβ. J. Neurosci. 28, 3555–3566 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lemere, C. A., Maron, R., Selkoe, D. J. & Weiner, H. L. Nasal vaccination with β-amyloid peptide for the treatment of Alzheimer's disease. DNA Cell Biol. 20, 705–711 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Town, T. et al. Characterization of murine immunoglobulin G antibodies against human amyloid-β1–42 . Neurosci. Lett. 307, 101–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. McLaurin, J. et al. Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat. Med. 8, 1263–1269 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Cribbs, D. H. et al. Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with β-amyloid. Int. Immunol. 15, 505–514 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Gardberg, A. S. et al. Molecular basis for passive immunotherapy of Alzheimer's disease. Proc. Natl Acad. Sci. USA 104, 15659–15664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Monsonego, A., Maron, R., Zota, V., Selkoe, D. & Weiner, H. Immune hyporesponsiveness to amyloid-β peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 10273–10278 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Das, P., Chapoval, S., Howard, V., David, C. S. & Golde, T. E. Immune responses against Aβ1–42 in HLA class II transgenic mice: implications for Aβ1–42 immune-mediated therapies. Neurobiol. Aging 24, 969–976 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. DeMattos, R. et al. Peripheral anti-Aβ antibody alters CNS and plasma clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bard, F. et al. Epitope and isotype specificities of antibodies to β-amyloid for protection against Alzheimer's disease-like neuropathology. Proc. Natl Acad. Sci. USA 100, 2023–2028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Kotilinek, L. A. et al. Reversible memory loss in a mouse transgenic model of Alzheimer's disease. J. Neurosci. 22, 6331–6335 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat. Neurosci. 5, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Pfeifer, M. et al. Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 298, 1379 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Racke, M. M. et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. J. Neurosci. 25, 629–636 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilcock, D. M. et al. Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J. Neuroinflammation 1, 24 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Chauhan, N. B. & Siegel, G. J. Reversal of amyloid β toxicity in Alzheimer's disease model Tg2576 by intraventricular antiamyloid β antibody. J. Neurosci. Res. 69, 10–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Chauhan, N. B. & Siegel, G. J. Intracerebroventricular passive immunization with anti-Aβ antibody in Tg2576. J. Neurosci. Res. 74, 142–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Klyubin, I. et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nat. Med. 11, 556–561 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Klyubin, I. et al. Amyloid β protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J. Neurosci. 28, 4231–4237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spires-Jones, T. L. et al. Passive immunotherapy rapidly increases structural plasticity in a mouse model of Alzheimer disease. Neurobiol. Dis. 33, 213–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Bayer, A. J. et al. Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64, 94–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Wisniewski, T. & Frangione, B. Immunological and anti-chaperone therapeutic approaches for Alzheimer disease. Brain Pathol. 15, 72–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Pride, M. et al. Progress in the active immunotherapeutic approach to Alzheimer's disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener. Dis. 5, 194–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, M. et al. Aβ42 immunization in Alzheimer's disease generates Aβ N-terminal antibodies. Ann. Neurol. 58, 430–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hock, C. et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron 38, 547–554 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Vellas, B. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr. Alzheimer Res. 6, 144–151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fox, N. C. et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64, 1563–1572 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Masliah, E. et al. Re-evaluation of the structural organization of neuritic plaques in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 52, 619–632 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Braak, E., Braak, H. & Mandelkow, E. M. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. 87, 554–567 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Hof, P. & Morrison, J. in Alzheimer Disease (eds Terry, R., Katzman, R. & Bick, K.) 197–230 (Raven Press, New York, 1994).

    Google Scholar 

  55. Perry, E. K. et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 2, 1457–1459 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perry, E. Cholinergic signaling in Alzheimer disease: therapeutic strategies. Alzheimer Dis. Assoc. Disord. 9 (Suppl. 2), 1–2 (1995).

    PubMed  Google Scholar 

  57. Trojanowski, J. Q. et al. Altered tau and neurofilament proteins in neuro-degenerative diseases: diagnostic implications for Alzheimer's disease and Lewy body dementias. Brain Pathol. 3, 45–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Masliah, E. et al. Synaptic and neuritic alterations during the progression of Alzheimer's disease. Neurosci. Lett. 74, 67–72 (1994).

    Article  Google Scholar 

  60. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Spires, T. L. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci. 25, 7278–7287 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moolman, D. L., Vitolo, O. V., Vonsattel, J. P. & Shelanski, M. L. Dendrite and dendritic spine alterations in Alzheimer models. J. Neurocytol. 33, 377–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Ferrer, I., Boada Rovira, M., Sánchez Guerra, M. L., Rey, M. J. & Costa-Jussá, F. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease. Brain Pathol. 14, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Nicoll, J. A. et al. Aβ species removal after Aβ42 immunization. J. Neuropathol. Exp. Neurol. 65, 1040–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Bombois, S. et al. Absence of β-amyloid deposits after immunization in Alzheimer disease with Lewy body dementia. Arch. Neurol. 64, 583–587 (2007).

    Article  PubMed  Google Scholar 

  67. Masliah, E. et al. Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64, 129–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Patton, R. L. et al. Amyloid-β peptide remnants in AN-1792-immunized Alzheimer's disease patients: a biochemical analysis. Am. J. Pathol. 169, 1048–1063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boche, D. et al. Consequence of Aβ immunization on the vasculature of human Alzheimer's disease brain. Brain 131, 3299–3310 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Grundman M. & Black, R. Clinical trials of bapineuzumab, a β-amyloid-targeted immunotherapy in patients with mild to moderate Alzheimer's disease [abstract O3-04-05]. Alzheimers Dementia 4, T166 (2008).

    Google Scholar 

  71. Elan and Wyeth plan to amend bapineuzumab phase 3 protocols. Press release [online], (2009).

  72. Siemers, E. R. et al. Safety, tolerability and biomarker effects of an Aβ monoclonal antibody administered to patients with Alzheimer's disease [abstract P4–346]. Alzheimers Dementia 4, T774 (2008).

    Google Scholar 

  73. Siemers, E. R. et al. Measurement of cerebrospinal fluid total tau and phospho-tau in phase 2 trials of therapies targeting Aβ [abstract]. Alzheimers Dementia 5, P258 (2009).

    Google Scholar 

  74. De Mattos, R. B. et al. Identification, characterization, and comparison of amino-terminally truncated Aβ42 peptides in Alzheimer's disease brain tissue and in plasma from Alzheimer's patients receiving solanezumab immunotherapy treatment [abstract]. Alzheimers Dementia 5, P156–P157 (2009).

    Google Scholar 

  75. Relkin, N. R. Natural human antibodies targeting amyloid aggregates in intravenous immunoglobulin [abstract S1-02-02]. Alzheimers Dementia 4, T101 (2008).

    Article  Google Scholar 

  76. Du, Y. et al. Human anti-β-amyloid antibodies block β-amyloid fibril formation and prevent β-amyloid-induced neurotoxicity. Brain 126, 1935–1939 (2003).

    Article  PubMed  Google Scholar 

  77. Ma, Q. L. et al. Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and τ phosphorylation in vivo and in vitro. J. Neurosci. Res. 83, 374–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Istrin, G., Bosis, E. & Solomon, B. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-β peptide. J. Neurosci. Res. 84, 434–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Dodel, R. C. et al. Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 75, 1472–1474 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Relkin, N. R. et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol. Aging 30, 1728–1736 (2008).

    Article  PubMed  CAS  Google Scholar 

  81. Strobel, G. An eFAD prevention trial—one man's view. Alzheimer Research Forum [online], (2009).

    Google Scholar 

  82. Bengt, G. Results of the first-in-man study with the active Aβ immunotherapy CAD106 in Alzheimer patients [abstract]. Alzheimers Dementia 5, P113–P114 (2009).

    Google Scholar 

  83. Schneeberger, A., Mandler, M., Zauner, W., Mattner, F. & Schmidt, W. Development of Alzheimer AFFITOPE vaccines—from concept to clinical testing [abstract]. Alzheimers Dementia 5, P257 (2009).

    Article  Google Scholar 

  84. Fagan, A. M. et al. Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol. 64, 343–349 (2007).

    Article  PubMed  Google Scholar 

  85. Mattsson, N. et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302, 385–393 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Fagan, A. M. et al. Decreased cerebrospinal fluid Aβ42 correlates with brain atrophy in cognitively normal elderly. Ann. Neurol. 65, 176–183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Price, J. L. et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol. Aging 30, 1026–1036 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Craig-Schapiro, R., Fagan, A. M. & Holtzman, D. M. Biomarkers of Alzheimer's disease. Neurobiol. Dis. 35, 128–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Carlson, N. E. et al. Trajectories of brain loss in aging and the development of cognitive impairment. Neurology 70, 828–833 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Mathis, C. A. et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem. 46, 2740–2754 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Archer, H. A. et al. Amyloid load and cerebral atrophy in Alzheimer's disease: an 11C-PIB positron emission tomography study. Ann. Neurol. 60, 145–147 (2006).

    Article  PubMed  Google Scholar 

  92. Klunk, W. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburg Compound-B. Ann. Neurol. 55, 306–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Fagan, A. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol. 59, 512–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Pike, K. E. et al. β-Amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 130, 2837–2844 (2007).

    Article  PubMed  Google Scholar 

  95. Rowe, C. C. et al. Imaging β-amyloid burden in aging and dementia. Neurology 68, 1718–1725 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Mormino, E. C. et al. Episodic memory loss is related to hippocampal-mediated β-amyloid deposition in elderly subjects. Brain 132, 1310–1323 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gouras, G. K. et al. Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 156, 15–20 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tampellini, D. et al. Internalized antibodies to the Aβ domain of APP reduce neuronal Aβ and protect against synaptic alterations. J. Biol. Chem. 282, 18895–18906 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Arbel, M. & Solomon, B. A novel immunotherapy for Alzheimer's disease: antibodies against the β-secretase cleavage site of APP. Curr. Alzheimer Res. 4, 437–445 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Effros, R. B. et al. Workshop on HIV infection and aging: what is known and future research directions. Clin. Infect. Dis. 47, 542–553 (2008).

    Article  PubMed  Google Scholar 

  101. Ghochikyan, A. Rationale for peptide and DNA based epitope vaccines for Alzheimer's disease immunotherapy. CNS Neurol. Disord. Drug Targets 8, 128–143 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Selkoe, D. J. The molecular pathology of Alzheimer's disease. Neuron 6, 487–498 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Hardy, J. & Higgins, G. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Winklhofer, K. F., Tatzelt, J. & Haass, C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J. 27, 336–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Knobloch, M., Farinelli, M., Konietzko, U., Nitsch, R. M. & Mansuy, I. M. Aβ oligomer-mediated long-term potentiation impairment involves protein phosphatase 1-dependent mechanisms. J. Neurosci. 27, 7648–7653 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nikolaev, A., McLaughlin, T., O'Leary, D. D. & Tessier-Lavigne, M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chiba, T. et al. Amyloid-β causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons. Mol. Psychiatry 14, 206–222 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Selkoe, D. J. Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann. NY Acad. Sci. 924, 17–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Frenkel, D., Dewachter, I., Van Leuven, F. & Solomon, B. Reduction of β-amyloid plaques in brain of transgenic mouse model of Alzheimer's disease by EFRH-phage immunization. Vaccine 21, 1060–1065 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Agadjanyan, M. G. et al. Prototype Alzheimer's disease vaccine using the immunodominant B cell epitope from β-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. J. Immunol. 174, 1580–1586 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Petrushina, I. et al. Alzheimer's disease peptide epitope vaccine reduces insoluble but not soluble/oligomeric Aβ species in amyloid precursor protein transgenic mice. J. Neurosci. 27, 12721–12731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seabrook, T. J. et al. Dendrimeric Aβ1–15 is an effective immunogen in wildtype and APP tg mice. Neurobiol. Aging 28, 813–823 (2006).

    Article  PubMed  CAS  Google Scholar 

  114. Bowers, W. J. et al. HSV amplicon-mediated Aβ vaccination in Tg2576 mice: differential antigen-specific immune responses. Neurobiol. Aging 26, 393–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, C. Y. et al. Site-specific UBITh amyloid-β vaccine for immunotherapy of Alzheimer's disease. Vaccine 25, 3041–3052 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Okura, Y. et al. Nonviral Abeta DNA vaccine therapy against Alzheimer's disease: long-term effects and safety. Proc. Natl Acad. Sci. USA 103, 9619–9624 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Movsesyan, N. et al. Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine—a novel immunotherapeutic strategy. PLoS ONE 3, e2124 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Movsesyan, N. et al. DNA epitope vaccine containing complement component C3d enhances anti-amyloid-β antibody production and polarizes the immune response towards a Th2 phenotype. J. Neuroimmunol. 205, 57–63 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bach, P. et al. Vaccination with Aβ-displaying virus-like particles reduces soluble and insoluble cerebral Aβ and lowers plaque burden in APP transgenic mice. J. Immunol. 182, 7613–7624 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Lee, E. B. et al. Targeting amyloid-β peptide (Aβ) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice. J. Biol. Chem. 281, 4292–4299 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Lambert, M. P. et al. Monoclonal antibodies that target pathological assemblies of Aβ. J. Neurochem. 100, 23–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Levites, Y. et al. Intracranial adeno-associated virus-mediated delivery of anti-pan amyloid beta, amyloid β40, and amyloid β42 single-chain variable fragments attenuates plaque pathology in amyloid precursor protein mice. J. Neurosci. 26, 11923–11928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, Y. J. et al. Intramuscular delivery of a single chain antibody gene reduces brain Aβ burden in a mouse model of Alzheimer's disease. Neurobiol. Aging 30, 364–376 (2009).

    Article  PubMed  CAS  Google Scholar 

  124. Meli, G., Visintin, M., Cannistraci, I. & Cattaneo, A. Direct in vivo intracellular selection of conformation-sensitive antibody domains targeting Alzheimer's amyloid-β oligomers. J. Mol. Biol. 387, 584–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Sudol, K. et al. Generating differentially targeted amyloid-β specific intrabodies as a passive vaccination strategy for Alzheimer's disease. Mol. Ther. 17, 2031–2040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Acero, G. et al. Immunodominant epitope and properties of pyroglutamate-modified Aβ-specific antibodies produced in rabbits. J. Neuroimmunol. 213, 39–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Das, P. et al. Amyloid-β immunization effectively reduces amyloid deposition in FcRγ−/− knock-out mice. J. Neurosci. 23, 8532–8538 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bacskai, B. J. et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-β in vivo by immunotherapy. J. Neurosci. 22, 7873–7878 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lemere, C. A. et al. Evidence for peripheral clearance of cerebral Aβ protein following chronic, active Aβ immunization in PSAPP mice. Neurobiol. Dis. 14, 10–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Yamada, K. et al. Aβ immunotherapy: intracerebral sequestration of Aβ by an anti-Aβ monoclonal antibody 266 with high affinity to soluble Aβ. J. Neurosci. 29, 11393–11398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Britschgi, M. et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer's disease. Proc. Natl Acad. Sci. USA 106, 12145–12150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Weksler, M. E. et al. Patients with Alzheimer's disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp. Gerontol. 37, 943–948 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Douglas Galasko (UCSD, La Jolla, CA, USA) for his helpful comments and Anahit Ghochikyan (Institute for Molecular Medicine, Huntington Beach, CA, USA) for her help in the design of Figure 1. This work was supported by NIH grants to C. A. Lemere (RO1AG20159) and E. Masliah (AG5131, AG18440, AG02074 and AG10435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia A. Lemere.

Ethics declarations

Competing interests

C. A. Lemere has received research support from Elan and Wyeth. E. Masliah declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemere, C., Masliah, E. Can Alzheimer disease be prevented by amyloid-β immunotherapy?. Nat Rev Neurol 6, 108–119 (2010). https://doi.org/10.1038/nrneurol.2009.219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing