Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ATP7A-related copper transport diseases—emerging concepts and future trends

Abstract

This Review summarizes recent advances in understanding copper-transporting ATPase 1 (ATP7A), and examines the neurological phenotypes associated with dysfunction of this protein. Involvement of ATP7A in axonal outgrowth, synapse integrity and neuronal activation underscores the fundamental importance of copper metabolism to neurological function. Defects in ATP7A cause Menkes disease, an infantile-onset, lethal condition. Neonatal diagnosis and early treatment with copper injections enhance survival in patients with this disease, and can normalize clinical outcomes if mutant ATP7A molecules retain small amounts of residual activity. Gene replacement rescues a mouse model of Menkes disease, suggesting a potential therapeutic approach for patients with complete loss-of-function ATP7A mutations. Remarkably, a newly discovered ATP7A disorder—isolated distal motor neuropathy—has none of the characteristic clinical or biochemical abnormalities of Menkes disease or its milder allelic variant occipital horn syndrome (OHS), instead resembling Charcot–Marie–Tooth disease type 2. These findings indicate that ATP7A has a crucial but previously unappreciated role in motor neuron maintenance, and that the mechanism underlying ATP7A-related distal motor neuropathy is distinct from Menkes disease and OHS pathophysiology. Collectively, these insights refine our knowledge of the neurology of ATP7A-related copper transport diseases and pave the way for further progress in understanding ATP7A function.

Key Points

  • The critical involvement of copper-transporting ATPase 1 (ATP7A) in axonal outgrowth, synapse integrity and neuronal activation underlines the fundamental role of copper metabolism in neurological function

  • Mutations in ATP7A yield three distinct clinical syndromes—Menkes disease, occipital horn syndrome (OHS) and isolated distal motor neuropathy—each of which has distinct neurological effects

  • Menkes disease results in lethal infantile neurodegeneration if left untreated, but normal neurodevelopmental outcomes are sometimes possible if therapy can be administered on the basis of neonatal diagnosis

  • In OHS, leaky splice junction or hypomorphic missense mutations in ATP7A allow considerable ATP7A-mediated copper transport, thereby sparing the CNS, but cuproenzyme deficiencies can cause dysautonomia and connective tissue problems

  • A newly discovered ATP7A phenotype, adult-onset distal motor neuropathy, shares no clinical or biochemical abnormalities with Menkes disease or OHS, and results from missense mutations that cause mistrafficking of ATP7A

  • A rich array of model organisms provides an opportunity for further exploration of human copper metabolism and evaluation of potential disease remedies, including gene therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed mechanisms of copper transport to the CNS.
Figure 2: Clinical phenotypes associated with mutations at the ATP7A locus.
Figure 3: Topology of ATP7A missense mutations.
Figure 4: Yeast complementation assay predicts treatment response in Menkes disease.
Figure 5: Serial brain MRI scans from three patients with Menkes disease diagnosed and treated during the newborn period.
Figure 6: Proposed roles of ATP7A in motor neurons.

Similar content being viewed by others

References

  1. Banci, L., Bertini, I., Cantini, F. & Ciofi-Baffoni, S. Cellular copper distribution: a mechanistic systems biology approach. Cell. Mol. Life Sci. 67, 2563–2589 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Lalioti, V., Muruais, G., Tsuchiya, Y., Pulido, D. & Sandoval, I. V. Molecular mechanisms of copper homeostasis. Front. Biosci. 14, 4878–4903 (2009).

    Article  CAS  Google Scholar 

  3. Kim, B. E., Nevitt, T. & Thiele, D. J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4, 176–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Barry, A. N., Shinde, U. & Lutsenko, S. Structural organization of human Cu-transporting ATPases: learning from building blocks. J. Biol. Inorg. Chem. 15, 47–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Veldhuis, N. A., Gaeth, A. P., Pearson, R. B., Gabriel, K. & Camakaris, J. The multi-layered regulation of copper translocating P-type ATPases. Biome tals 22, 177–190 (2009).

    Article  CAS  Google Scholar 

  6. La Fontaine, S. & Mercer, J. F. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch. Biochem. Biophys. 463, 149–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Vulpe, C, B. Levinson, S. Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat. Genet. 3, 7–13 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Chelly, J. et al. Isolation of a candidate gene for Menkes disease which encodes for a potential heavy metal binding protein. Nat. Genet. 3, 14–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Mercer, J. F. et al. Isolation of a partial candidate gene of Menkes disease by positional cloning. Nat. Genet. 3, 20–25 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Kaler, S. G. et al. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat. Genet. 8, 195–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Schlief, M. L., Craig, A. M. & Gitlin, J. D. NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J. Neurosci. 25, 239–246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. El Meskini, R. et al. ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis. Mol. Cell. Neurosci. 34, 409–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Qin, Z. et al. Role of Menkes ATPase in angiotensin II-induced hypertension: a key modulator for extracellular superoxide dismutase function. Hypertension 52, 945–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Rabik, C. A. Role of copper transporters in resistance to platinating agents. Cancer Chemother. Pharmacol. 64, 133–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. White, C., Lee, J., Kambe, T., Fritsche, K. & Petris, M. J. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284, 33949–33956 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, B. E. et al. Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab. 11, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Menkes, J. H., Alter, M., Weakley, D. & Sung, D. H. A sex-linked recessive disorder with growth retardation, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics 29, 764–779 (1962).

    CAS  PubMed  Google Scholar 

  18. Kaler, S. G. Menkes disease. Adv. Pediatr. 41, 263–304 (1994).

    CAS  PubMed  Google Scholar 

  19. Danks, D. M., Campbell, P. E., Stevens, B. J., Mayne, V. & Cartwright, E. Menkes' kinky hair syndrome: an inherited defect in copper absorption with widespread effects. Pediatrics 50, 188–201 (1972).

    Article  CAS  PubMed  Google Scholar 

  20. Goka, T. J., Stevenson, R. E., Hefferan, P. M. & Howell, R. R. Menkes disease: a biochemical abnormality in cultured human fibroblasts. Proc. Natl Acad. Sci. USA 73, 604–606 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beratis, N. G., Price, P., Labadie, G. & Hirschhorn, K. 64Cu metabolism in Menkes and normal cultured skin fibroblasts. Pediatr. Res. 12, 699–702 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Kaler, S. G., Goldstein, D. S., Holmes, C., Salerno, J. A. & Gahl, W. A. Plasma and cerebrospinal fluid neurochemical pattern in Menkes disease. Ann. Neurol. 33, 171–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Bennetts, H. W. & Chapman, F. E. Copper deficiency in sheep in western Australia: a preliminary account of the aetiology of enzootic ataxia of lambs and an anaemia of ewes. Aust. Vet. J. 13, 138–149 (1937).

    Article  CAS  Google Scholar 

  24. Kaler, S. G. et al. Neonatal diagnosis and treatment of Menkes disease. N. Engl. J. Med. 358, 605–614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaler, S. G. in Small Molecule Therapy for Genetic Disease (ed. Thoene, J.) 202–212 (Cambridge University Press, New York, 2010).

    Book  Google Scholar 

  26. Das, S. et al. Diverse mutations in patients with Menkes disease often lead to exon skipping. Am. J. Hum. Genet. 55, 883–889 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaler, S. G. Molecular and metabolic bases of Menkes disease and occipital horn syndrome. Pediatr. Dev. Path. 1, 85–98 (1998).

    Article  CAS  Google Scholar 

  28. Tümer, Z. et al. Identification of point mutations in 41 unrelated patients affected with Menkes disease. Am. J. Hum. Genet. 60, 63–71 (1997).

    PubMed  PubMed Central  Google Scholar 

  29. Liu, P. C., McAndrew, P. E. & Kaler, S. G. Rapid and robust screening of the Menkes disease/occipital horn syndrome gene. Genet. Test. 6, 255–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Moizard, M.-P. et al. Twenty-five novel mutations including duplications in the ATP7A gene. Clin. Genet. doi:10.1111/j.1399–00042010.01461.x.

  31. Kaler, S. G. et al. Early copper therapy in classic Menkes disease patients with a novel splicing mutation. Ann. Neurol. 38, 921–928 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Kaler, S. G. Menkes disease mutations and response to early copper histidine treatment. Nat. Genet. 13, 21–22 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, P. C. et al. Downregulation of myelination, energy, and translational genes in Menkes disease brain. Mol. Genet. Metab. 85, 291–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Fraser, A. S., Sobey, S. & Spicer, C. C. Mottled, a sex-modified lethal in the house mouse. J. Genet. 51, 217–221 (1953).

    Article  Google Scholar 

  35. Hunt, D. M. Primary defect in copper transport underlies mottled mutants in mouse. Nature 249, 852–854 (1974).

    Article  CAS  PubMed  Google Scholar 

  36. Levinson, B. et al. The mottled gene is the mouse homologue of the Menkes disease gene. Nat. Genet. 6, 369–373 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Meguro, Y. et al. Changes in copper level and cytochrome c oxidase activity in the macular mouse with age. Brain Dev. 13, 184–186 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Royce, P. M., Camakaris, J., Mann, J. R. & Danks, D. M. Copper metabolism in mottled mouse mutants. The effect of copper therapy on lysyl oxidase activity in brindled (Mobr) mice. Biochem. J. 202, 369–371 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wenk, G. & Suzuki, K. Congenital copper deficiency: copper therapy and dopamine-β-hydroxylase activity in the mottled (brindled) mouse. J. Neurochem. 41, 1648–1652 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Fujii, T., Ito, M., Tsuda, H. & Mikawa, H. Biochemical study on the critical period for treatment of the mottled brindled mouse. J. Neurochem. 55, 885–889 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Lazoff, S. G., Rybak, J. J., Parker, B. R. & Luzzatti, L. Skeletal dysplasia, occipital horns, diarrhea and obstructive uropathy—a new hereditary syndrome. Birth Defects 11, 71–74 (1975).

    CAS  PubMed  Google Scholar 

  42. Tsukahara, M., Imaizumi, K., Kawai, S. & Kajii, T. Occipital horn syndrome: report of a patient and review of the literature. Clin. Genet. 45, 32–35 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Tang, J., Robertson, S. P., Lem, K. E., Godwin, S. C. & Kaler, S. G. Functional copper transport explains neurologic sparing in occipital horn syndrome. Genet. Med. 8, 711–718 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Siegel, R. C. Lysyl oxidase. Int. Rev. Connect. Tissue Res. 8, 73–118 (1979).

    Article  CAS  PubMed  Google Scholar 

  45. Robertson, D. et al. Isolated failure of autonomic noradrenergic neurotransmission. N. Eng. J. Med. 314, 1494–1497 (1986).

    Article  CAS  Google Scholar 

  46. Biaggioni, I., Goldstein, D. S., Atkinson, T. & Robertson, D. Dopamine-β-hydroxylase deficiency in humans. Neurology 40, 370–373 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Das, S. et al. Similar splicing mutations of the Menkes/mottled copper-transporting ATPase gene in occipital horn syndrome and the blotchy mouse. Am. J. Hum. Genet. 56, 570–576 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Andrews, E. J., White, W. J. & Bullock, L. P. Spontaneous aortic aneurysms in blotchy mice. Am. J. Pathol. 78, 199–210 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Takata, R. I. et al. A new locus for recessive distal spinal muscular atrophy at Xq13.1-q21. J. Med. Genet. 41, 224–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kennerson, M. et al. X-linked distal hereditary motor neuropathy maps to the DSMAX locus on chromosome Xq13.1–q21. Neurology 72, 246–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Kennerson, M. L. et al. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am. J. Hum. Genet. 86, 343–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van den Berghe, P. V. & Klomp, L. W. New developments in the regulation of intestinal copper absorption. Nutr. Rev. 67, 658–672 (2009).

    Article  PubMed  Google Scholar 

  53. Liu, N. et al. Transcuprein is a macroglobulin regulated by copper and iron availability. J. Nutr. Biochem. 18, 597–608 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Petris, M. J. et al. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choi, B. S. & Zheng, W. Copper transport to the brain by the blood–brain barrier and blood–CSF barrier. Brain Res. 1248, 14–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Aoki, I., Wu, Y. J., Silva, A. C., Lynch, R. M. & Koretsky, A. P. In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 22, 1046–1059 (2004).

    Article  PubMed  Google Scholar 

  57. Kuo, Y. M., Gitschier, J. & Packman, S. Developmental expression of the mouse mottled and toxic milk genes suggests distinct functions for the Menkes and Wilson disease copper transporters. Hum. Mol. Genet. 6, 1043–1049 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Niciu, M. J. et al. Developmental changes in the expression of ATP7A during a critical period in postnatal neurodevelopment. Neuroscience 139, 947–964 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Quinton, P. M., Wright, E. M. & Tormey, J. M. Localization of sodium pumps in the choroid plexus epithelium. J. Cell Biol. 58, 724–730 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alper, S. L., Stuart-Tilley, A., Simmons, C. F., Brown, D. & Drenckhahn, D. The fodrin–ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+K+-ATPase rather than with basolateral anion exchanger AE2. J. Clin. Invest. 93, 1430–1438 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Robinson, N. J. & Winge, D. R. Copper metallochaperones. Annu. Rev. Biochem. 79, 537–562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mendelsohn, B. A. et al. Atp7a determines a hierarchy of copper metabolism essential for notochord development. Cell Metab. 4, 155–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Bousquet-Moore, D. et al. Interactions of peptide amidation and copper: novel biomarkers and mechanisms of neural dysfunction. Neurobiol. Dis. 37, 130–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. El Meskini, R., Cline, L. B., Eipper, B. A. & Ronnett, G. V. The developmentally regulated expression of Menkes protein ATP7A suggests a role in axon extension and synaptogenesis. Dev. Neurosci. 27, 333–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Schlief, M. L., West, T., Craig, A. M., Holtzman, D. M. & Gitlin, J. D. Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc. Natl Acad. Sci. USA 103, 14919–14924 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Odermatt, A., Suter, H., Krapf, R. & Solioz, M. Primary structure of two P-type ATPases involved in copper homeostais in Enterococcus hirae. J. Biol. Chem. 268, 12775–12779 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Pedersen, P. L. & Carafoli, E. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12, 146–150 (1987).

    Article  CAS  Google Scholar 

  68. Kaler, S. G. et al. Successful early copper therapy in Menkes disease associated with a mutant transcript containing a small in-frame deletion. Biochem. Mol. Med. 57, 37–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Friedman, E., Harden, A., Koivikko, M. & Pampiglione, G. Menkes' disease: neurophysiological aspects. J. Neurol. Neurosurg. Psychiatry 41, 505–510 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bahi-Buisson, N. et al. Epilepsy in Menkes disease: analysis of clinical stages. Epilepsia 47, 380–386 (2006).

    Article  PubMed  Google Scholar 

  71. White, S. R., Reese, K., Sato, S. & Kaler, S. G. Spectrum of EEG findings in Menkes disease. Electroencephalogr. Clin. Neurophysiol. 87, 57–61 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Amador, E., Domene, R., Fuentes, C., Carreño, J. C. & Enríquez, G. Long-term skeletal findings in Menkes disease. Pediatr. Radiol. 40, 1426–1429 (2010).

    Article  PubMed  Google Scholar 

  73. Kaler, S. G. et al. Gastrointestinal hemorrhage associated with gastric polyps in Menkes disease. J. Pediatr. 122, 93–95 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Grange, D. K. et al. Severe bilateral panlobular emphysema and pulmonary arterial hypoplasia: unusual manifestations of Menkes disease. Am. J. Med. Genet. 139, 151–155 (2005).

    Article  Google Scholar 

  75. Godwin, S. C., Shawker, T, Chang, M. & Kaler, S. G. Brachial artery aneurysms in Menkes disease. J. Pediatr. 149, 412–415 (2006).

    Article  PubMed  Google Scholar 

  76. Price, D., Ravindranath, T. & Kaler, S. G. Internal jugular phlebectasia in Menkes disease. Int. J. Pediatr. Otorhinolarygol. 71, 1145–1148 (2007).

    Article  Google Scholar 

  77. Setty, S. R. et al. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 454, 1142–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Goldstein, D. S., Holmes, C. S. & Kaler, S. G. Relative efficiencies of plasma catechol levels and ratios for neonatal diagnosis of Menkes disease. Neurochem. Res. 34, 1464–1468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eipper, B. A., Stoffers, D. A. & Mains, R. E. The biosynthesis of neuropeptides: peptide α-amidation. Annu. Rev. Neurosci. 15, 57–85 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Hansel, D. E., May, V., Eipper, B. A. & Ronnett, G. V. Pituitary adenylyl cyclase-activating peptides and α-amidation in olfactory neurogenesis and neuronal survival in vitro. J. Neurosci. 21, 4625–4636 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ambrosini, L. & Mercer, J. F. Defective copper-induced trafficking and localization of the Menkes protein in patients with mild and copper-treated classical Menkes disease. Hum. Mol. Genet. 8, 1547–1555 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, B. E., Smith, K. & Petris, M. J. A copper treatable Menkes disease mutation associated with defective trafficking of a functional Menkes copper ATPase. J. Med. Genet. 40, 290–295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Bie, P., Muller, P., Wijmenga, C. & Klomp, L. W. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J. Med. Genet. 44, 673–688 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang, J., Donsante, A., Desai, V., Patronas, N. & Kaler, S. G. Clinical outcomes in Menkes disease patients with a copper-responsive ATP7A mutation, G727R. Mol. Genet. Metab. 95, 174–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaler, S. G. et al. Molecular correlates of epilepsy in early diagnosed and treated Menkes disease. J. Inher. Metab. Dis. 33, 583–589 (2010).

    Article  PubMed  Google Scholar 

  86. Gu, Y. H. et al. ATP7A gene mutations in 16 patients with Menkes disease and a patient with occipital horn syndrome. Am. J. Med. Genet. 99, 217–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Tümer, Z., Birk Møller, L. & Horn, N. Screening of 383 unrelated patients affected with Menkes disease and finding of 57 gross deletions in ATP7A. Hum. Mutat. 22, 457–464 (2003).

    Article  PubMed  CAS  Google Scholar 

  88. Møller, L. B. et al. Identification and analysis of 21 novel disease-causing amino acid substitutions in the conserved part of ATP7A. Hum. Mutat. 26, 84–93 (2005).

    Article  PubMed  CAS  Google Scholar 

  89. Møller, L. B., Mogensen, M. & Horn, N. Molecular diagnosis of Menkes disease: genotype–phenotype correlation. Biochimie 91, 1273–1277 (2009).

    Article  PubMed  CAS  Google Scholar 

  90. Donsante, A. et al. Differences in ATP7A gene expression underlie intra-familial variability in Menkes disease/occipital horn syndrome. J. Med. Genet. 44, 492–497 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaler, S. G., Tang, J. R., Donsante, A. & Kaneski, C. Translational read-through of a nonsense mutation in ATP7A. Ann. Neurol. 65, 108–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaler, S. G. & Tümer, Z. Prenatal diagnosis of Menkes disease. Prenat. Diagn. 18, 287–289 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Tümer, Z. et al. Early copper-histidine treatment for Menkes disease. Nat. Genet. 12, 11–13 (1996).

    Article  PubMed  Google Scholar 

  94. Paulsen, M. et al. Evidence that translation reinitiation leads to a partially functional Menkes protein containing two copper-binding sites. Am. J. Hum. Genet. 79, 214–229 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sheela, S. R., Manoj, L., Liu, P.-C., Lem, K. E. & Kaler, S. G. Copper replacement treatment for symptomatic Menkes disease: ethical considerations. Clin. Genet. 68, 278–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Brunetti-Pierri, N. & Auricchio, A. Gene therapy of human inherited diseases. The Online Metabolic and Molecular Basis of Inherited Disease [online], (2010).

    Google Scholar 

  97. Donsante, A. & Kaler, S. G. Patterns of motor function recovery in a murine model of severe Menkes disease rescued by brain-directed AAV5 gene therapy plus copper. Molec. Ther. 18 (Suppl. 1), S10 (2010).

    Google Scholar 

  98. Gacheru, S. et al. Expression and accumulation of lysyl oxidase, elastin, and type I procollagen in human Menkes and mottled mouse fibroblasts. Arch. Biochem. Biophys. 301, 325–329 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Ronce, N. et al. A C2055T transition in exon 8 of the ATP7A gene is associated with exon skipping in an occipital horn syndrome family. Am. J. Hum. Genet. 61, 233–238 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qi, M. & Byers, P. H. Constitutive skipping of alternatively spliced exon 10 in the ATP7A gene abolishes Golgi localization of the menkes protein and produces the occipital horn syndrome. Hum. Mol. Genet. 7, 465–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Borm, B. et al. Variable clinical expression of an identical mutation in the ATP7A gene for Menkes disease/occipital horn syndrome in three affected males in a single family. J. Pediatr. 145, 119–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Mercer, J. F. et al. Mutations in the murine homologue of the Menkes gene in dappled and blotchy mice. Nat. Genet. 6, 374–378 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Levinson, B. et al. A repeated element in the regulatory region of the MNK gene and its deletion in a patient with occipital horn syndrome. Hum. Mol. Genet. 11, 1737–1742 (1996).

    Article  Google Scholar 

  104. Dagenais, S. L., Adam, A. N., Innis, J. W. & Glover, T. W. A novel frameshift mutation in exon 23 of ATP7A (MNK) results in occipital horn syndrome and not in Menkes disease. Am. J. Hum. Genet. 69, 420–427 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Goldstein, D. S. L-Dihydroxyphenylserine (L-DOPS): a norepinephrine prodrug. Cardiovasc. Drug Rev. 24, 189–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. De Jonghe, P., Timmerman, V. & Van Broeckhoven, C. 2nd workshop of the European CMT consortium: 53rd ENMC international workshop on classification and diagnostic guidelines for Charcot–Marie–Tooth type 2 (CMT2–HMSN II) and distal hereditary motor neuropathy (distal HMN–Spinal CMT) 26–28 September 1997, Naarden, The Netherlands. Neuromuscul. Disord. 8, 426–431 (1998).

    Article  Google Scholar 

  107. Harding, A. E. in Peripheral Neuropathy 3rd edn (eds Dyck, P. J., Thomas, P. K., Griffin, J. W., Low, P. A. & Poduslo, J. F.) 1051–1064 (WB Saunders, Philadelphia, 1993).

    Google Scholar 

  108. Irobi-Devolder, J. A molecular genetic update of inherited distal motor neuropathies. Verh. K. Acad. Geneeskd. Belg. 70, 25–46 (2008).

    CAS  PubMed  Google Scholar 

  109. Auer-Grumbach, M. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat. Genet. 42, 160–164 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot–Marie–Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Evgrafov, O. V. et al. Mutant small heat-shock protein 27 causes axonal Charcot–Marie–Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36, 602–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Irobi, J. et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat. Genet. 36, 597–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Puls, I. et al. Distal spinal and bulbar muscular atrophy caused by dynactin mutation. Ann. Neurol. 57, 687–694 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Züchner, S. & Vance, J. M. Molecular genetics of autosomal-dominant axonal Charcot–Marie–Tooth disease. Neuromolecular Med. 8, 63–74 (2006).

    Article  PubMed  CAS  Google Scholar 

  115. Windpassinger, C. et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat. Genet. 36, 271–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Levy, J. R. et al. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J. Cell Biol. 172, 733–745 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Maystadt, I. et al. The nuclear factor κB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset. Am. J. Hum. Genet. 81, 67–76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lupo, V. et al. Missense mutations in the SH3TC2 protein causing Charcot–Marie–Tooth disease type 4C affect its localization in the plasma membrane and endocytic pathway. Hum. Mol. Genet. 18, 4603–4614 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Roberts, R. C. et al. Mistargeting of SH3TC2 away from the recycling endosome causes Charcot–Marie–Tooth disease type 4C. Hum. Mol. Genet. 19, 1009–1018 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Cogli, L., Piro, F. & Bucci, C. Rab7 and the CMT2B disease. Biochem. Soc. Trans. 37, 1027–1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Niemann, A., Berger, P. & Suter, U. Pathomechanisms of mutant proteins in Charcot–Marie–Tooth disease. Neuromolecular Med. 8, 217–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Scherer, S. S. & Wrabetz, L. Molecular mechanisms of inherited demyelinating neuropathies. Glia 56, 1578–1589 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Dion, P. A., Daoud, H. & Rouleau, G. A. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat. Rev. Genet. 10, 769–782 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Goodman, B. P. et al. Clinical and electrodiagnostic findings in copper deficiency myeloneuropathy. J. Neurol. Neurosurg. Psychiatry 80, 524–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Kelkar, P., Chang, S. & Muley, S. A. Response to oral supplementation in copper deficiency myeloneuropathy. J. Clin. Neuromuscul. Dis. 10, 1–3 (2008).

    Article  PubMed  Google Scholar 

  126. Kumar, N., Ahlskog, J. E., Klein, C. J. & Port, J. D. Imaging features of copper deficiency myelopathy: a study of 25 cases. Neuroradiology 48, 78–83 (2006).

    Article  PubMed  Google Scholar 

  127. Spain, R. I., Leist, T. P. & De Sousa, E. A. When metals compete: a case of copper-deficiency myeloneuropathy and anemia. Nat. Clin. Pract. Neurol. 5, 106–111 (2009).

    Article  PubMed  Google Scholar 

  128. Zara, G., Grassivaro, F., Brocadello, F., Manara, R. & Pesenti, F. F. Case of sensory ataxic ganglionopathy-myelopathy in copper deficiency. J. Neurol. Sci. 277, 184–186 (2009).

    Article  PubMed  Google Scholar 

  129. Weihl, C. C. & Lopate, G. Motor neuron disease associated with copper deficiency. Muscle Nerve 34, 789–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Foubert-Samier, A. et al. Axonal sensory motor neuropathy in copper-deficient Wilson's disease. Muscle Nerve 40, 294–296 (2009).

    Article  PubMed  Google Scholar 

  131. Allen Institute for Brain Science. Allen Spinal Cord Atlas [online], (2010).

  132. Federici, T. & Boulis, N. Gene therapy for peripheral nervous system diseases. Curr. Gene Ther. 7, 239–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Fu, D., Beeler, T. J. & Dunn, T. M. Sequence, mapping and disruption of CCC2, a gene that cross-complements the Ca2+-sensitive phenotype of csg1 mutants and encodes a P-type ATPase belonging to the Cu2+-ATPase subfamily. Yeast 11, 283–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Yuan, D. S., Dancis, A. & Klausner, R. D. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J. Biol. Chem. 272, 25787–25793 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Hung, I. H. et al. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 21461–21466 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Hsi, G. et al. Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system. Hum. Mutat. 29, 491–501 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Sambongi, Y. et al. Caenorhabditis elegans cDNA for a Menkes/Wilson disease gene homologue and its function in a yeast CCC2 gene deletion mutant. J. Biochem. 121, 1169–1175 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Norgate, M. et al. Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol. Biol. Cell. 17, 475–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Madsen, E. C., Morcos, P. A., Mendelsohn, B. A. & Gitlin, J. D. In vivo correction of a Menkes disease model using antisense oligonucleotides. Proc. Natl Acad. Sci. USA 105, 3909–3914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Madsen, E. C. & Gitlin, J. D. Zebrafish mutants calamity and catastrophe define critical pathways of gene–nutrient interactions in developmental copper metabolism. PLoS Genet. 4, e1000261 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. The Jackson Laboratory. Mouse Genome Informatics [online], (2010).

  142. Grimes, A., Hearn, C. J., Lockhart, P., Newgreen, D. F. & Mercer, J. F. Molecular basis of the brindled mouse mutant (Mobr): a murine model of Menkes disease. Hum. Mol. Genet. 6, 1037–1042 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Cecchi, C., Biasotto, M., Tosi, M. & Avner, P. The mottled mouse as a model for human Menkes disease: identification of mutations in the Atp7a gene. Hum. Mol. Genet. 6, 425–433 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Reed, V. & Boyd, Y. Mutation analysis provides additional proof that mottled is the mouse homologue of Menkes' disease. Hum. Mol. Genet. 6, 417–423 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Cunliffe, P., Reed, V. & Boyd, Y. Intragenic deletions at Atp7a in mouse models for Menkes disease. Genomics 74, 155–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Mototani, Y. et al. Phenotypic and genetic characterization of the Atp7aMo–Tohm mottled mouse: a new murine model of Menkes disease. Genomics 87, 191–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Mori, M. & Nishimura, M. A serine-to-proline mutation in the copper-transporting P-type ATPase gene of the macular mouse. Mamm. Genome 8, 407–410 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Masson, W., Hughes, H., Papworth, D., Boyd, Y. & Horn, N. Abnormalities of copper accumulation in cell lines established from nine different alleles of mottled are the same as those found in Menkes disease. J. Med. Genet. 34, 729–732 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. La Fontaine, S. et al. Intracellular localization and loss of copper responsiveness of Mnk, the murine homologue of the Menkes protein, in cells from blotchy (Moblo) and brindled (Mobr) mouse mutants. Hum. Mol. Genet. 8, 1069–1075 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Kim, B. E. & Petris, M. J. Phenotypic diversity of Menkes disease in mottled mice is associated with defects in localisation and trafficking of the ATP7A protein. J. Med. Genet. 44, 641–646 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Petris, M. J. et al. Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J. Biol. Chem. 277, 46736–46742 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Llanos, R. M. et al. Correction of a mouse model of Menkes disease by the human Menkes gene. Biochim. Biophys. Acta 1762, 485–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Watson, D. J., Passini, M. A. & Wolfe, J. H. Transduction of the choroid plexus and ependyma in neonatal mouse brain by vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus type 5 vectors. Hum. Gene Ther. 16, 49–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Donsante, A., Johnson, P., Jansen, L. A. & Kaler, S. G. Somatic mosaicism in Menkes disease suggests choroid plexus-mediated copper transport to the developing brain . Am. J. Med. Genet. 152A, 2529–2534 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Jung, K. H., Ahn, T. B. & Jeon, B. S. Wilson disease with an initial manifestation of polyneuropathy. Arch. Neurol. 62, 1628–1631 (2005).

    Article  PubMed  Google Scholar 

  156. Francis, M. J. et al. A Golgi localization signal identified in the Menkes recombinant protein. Hum. Mol. Genet. 7, 1245–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Goodyer, I. D., Jones, E. E., Monaco, A. P. & Francis, M. J. Characterization of the Menkes protein copper-binding domains and their role in copper-induced protein relocalization. Hum. Mol. Genet. 8, 1473–1478 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Strausak, D. et al. The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. J. Biol. Chem. 274, 11170–11177 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Voskoboinik, I. et al. Functional analysis of the N-terminal CXXC metal-binding motifs in the human Menkes copper-transporting P-type ATPase expressed in cultured mammalian cells. J. Biol. Chem. 274, 22008–22012 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Petris, M. J., Camakaris, J., Greenough, M., LaFontaine, S. & Mercer, J. F. A C-terminal di-leucine is required for localization of the Menkes protein in the trans-Golgi network. Hum. Mol. Genet. 7, 2063–2071 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Francis, M. J. et al. Identification of a di-leucine motif within the C terminus domain of the Menkes disease protein that mediates endocytosis from the plasma membrane. J. Cell Sci. 112, 1721–1732 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Greenough, M. et al. Signals regulating trafficking of Menkes (MNK; ATP7A) copper-translocating P-type ATPase in polarized MDCK cells. Am. J. Physiol. Cell Physiol. 287, C1463–C1471 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Piper, M. & Holt, C. RNA translation in axons. Annu. Rev. Cell. Dev. Biol. 20, 505–523 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Merianda, T. T. et al. A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol. Cell. Neurosci. 40, 128–142 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Written consent was obtained for publication of Figure 2a from the patient's mother. The author is supported by the Intramural Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NIH). The author apologizes to any colleagues whose work was not cited in this Review as a result of length constraints.

L. Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Figure 1

Cellular copper metabolism. (DOC 994 kb)

Supplementary Figure 2

The occipital 'horns' of occipital horn syndrome. (DOC 255 kb)

Supplementary Figure 3

Mutant ATP7A alleles that cause distal motor neuropathy traffic abnormally. (DOC 212 kb)

Supplementary Table 1

Proteins important for human copper metabolism (DOC 146 kb)

Supplementary Table 2

The multiple and varied functions of ATP7A (DOC 82 kb)

Supplementary Table 3

ATP7A mutations cause three distinct disorders (DOC 107 kb)

Supplementary Table 4

Mutant alleles at the mottled mouse locus (DOC 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaler, S. ATP7A-related copper transport diseases—emerging concepts and future trends. Nat Rev Neurol 7, 15–29 (2011). https://doi.org/10.1038/nrneurol.2010.180

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing