Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cell therapies for spinal cord injury

Abstract

Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been evaluated in animal models and humans with SCI. No consensus exists regarding the type of stem cell, if any, that will prove to be effective therapeutically. Most data suggest that no single therapy will be sufficient to overcome all the biological complications caused by SCI. Rationales for therapeutic use of stem cells for SCI include replacement of damaged neurons and glial cells, secretion of trophic factors, regulation of gliosis and scar formation, prevention of cyst formation, and enhancement of axon elongation. Most therapeutic approaches that use stem cells involve implantation of these cells into the spinal cord. The attendant risks of stem cell therapy for SCI—including tumor formation, or abnormal circuit formation leading to dysfunction—must be weighed against the potential benefits of this approach. This Review will examine the biological effects of SCI, the opportunities for stem cell treatment, and the types of stem cells that might be used therapeutically. The limited information available on the possible benefits of stem cell therapy to humans will also be discussed.

Key Points

  • Strategies for the therapeutic use of stem cells and their derivatives in spinal cord injury (SCI) include cell replacement, trophic support and facilitation of axon regeneration

  • Stem cell transplantation, either alone or in combination with other treatments, has produced functional improvements in animal models of SCI

  • Caution must be exercised when evaluating the successes of stem cell therapy for SCI, and when developing these therapies for appropriate clinical trials

  • The existing data from clinical trials have shown some stem cell transplants to be safe, but with very limited or no therapeutic efficacy

  • Future strategies for stem cell therapies include the use of induced pluripotent stem cells, as well as the modulation of endogenous progenitor cell populations

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rationales for stem cell transplantation in spinal cord injury repair.

Similar content being viewed by others

References

  1. Tator, C. H. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 5, 407–413 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Ackery, A., Tator, C. & Krassioukov, A. A global perspective on spinal cord injury epidemiology. J. Neurotrauma 21, 1355–1370 (2004).

    Article  PubMed  Google Scholar 

  3. Sekhon, L. H. & Fehlings, M. G. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26 (Suppl. 24), S2–S12 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Paralysis facts & figures. Christopher & Dana Reeve Foundation Paralysis Resource Center [online], (2010).

  5. Schwab, M. E. Repairing the injured spinal cord. Science 295, 1029–1031 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Park, E., Velumian, A. A. & Fehlings, M. G. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J. Neurotrauma 21, 754–774 (2004).

    Article  PubMed  Google Scholar 

  7. Stokes, B. T., Fox, P. & Hollinden, G. Extracellular calcium activity in the injured spinal cord. Exp. Neurol. 80, 561–572 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Balentine, J. D. Spinal cord trauma: in search of the meaning of granular axoplasm and vesicular myelin. J. Neuropathol. Exp. Neurol. 47, 77–92 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Basso, D. M., Beattie, M. S. & Bresnahan, J. C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol. 139, 244–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Kakulas, B. A. Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord 42, 549–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, X. Z. et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 17, 5395–5406 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N. & Beattie, M. S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 3, 73–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Emery, E. et al. Apoptosis after traumatic human spinal cord injury. J. Neurosurg. 89, 911–920 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Busch, S. A. & Silver, J. The role of extracellular matrix in CNS regeneration. Curr. Opin. Neurobiol. 17, 120–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A. & Muir, D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 154, 654–662 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Moon, L. D., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 4, 465–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Friedlander, D. R. et al. The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J. Cell Biol. 125, 669–680 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Milev, P., Maurel, P., Haring, M., Margolis, R. K. & Margolis, R. U. TAG-1/axonin-1 is a high-affinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-ζ/β, and N-CAM. J. Biol. Chem. 271, 15716–15723 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Milev, P. et al. Interactions of the chondroitin sulfate proteoglycan phosphacan, the extracellular domain of a receptor-type protein tyrosine phosphatase, with neurons, glia, and neural cell adhesion molecules. J. Cell Biol. 127, 1703–1715 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Oohira, A., Matsui, F., Tokita, Y., Yamauchi, S. & Aono, S. Molecular interactions of neural chondroitin sulfate proteoglycans in the brain development. Arch. Biochem. Biophys. 374, 24–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Shen, Y. et al. PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Menet, V., Prieto, M., Privat, A. & Gimenez y Ribotta, M. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc. Natl Acad. Sci. USA 100, 8999–9004 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilhelmsson, U. et al. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J. Neurosci. 24, 5016–5021 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 2143–2155 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 7231–7243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okada, S. et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat. Med. 12, 829–834 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Sahni, V. et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J. Neurosci. 30, 1839–1855 (2010).

  30. Blight, A. R. Macrophages and inflammatory damage in spinal cord injury. J. Neurotrauma 9 (Suppl. 1), S83–S91 (1992).

    PubMed  Google Scholar 

  31. Popovich, P. G., Wei, P. & Stokes, B. T. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J. Comp. Neurol. 377, 443–464 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kreutzberg, G. W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Beattie, M. S. et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36, 375–386 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Filbin, M. T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4, 703–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4, 814–821 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Enzmann, G. U., Benton, R. L., Talbott, J. F., Cao, Q. & Whittemore, S. R. Functional considerations of stem cell transplantation therapy for spinal cord repair. J. Neurotrauma 23, 479–495 (2006).

    Article  PubMed  Google Scholar 

  37. Okano, H. Stem cell biology of the central nervous system. J. Neurosci. Res. 69, 698–707 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Parr, A. M., Tator, C. H. & Keating, A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 40, 609–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Sharp, J. & Keirstead, H. S. Therapeutic applications of oligodendrocyte precursors derived from human embryonic stem cells. Curr. Opin. Biotechnol. 18, 434–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Louro, J. & Pearse, D. D. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol. Res. 30, 5–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Nandoe Tewarie, R. S., Hurtado, A., Bartels, R. H., Grotenhuis, A. & Oudega, M. Stem cell-based therapies for spinal cord injury. J. Spinal Cord Med. 32, 105–114 (2009).

    Article  PubMed  Google Scholar 

  42. Barnabé-Heider, F. & Frisen, J. Stem cells for spinal cord repair. Cell Stem Cell 3, 16–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. McDonald, J. W. & Belegu, V. Demyelination and remyelination after spinal cord injury. J. Neurotrauma 23, 345–359 (2006).

    Article  PubMed  Google Scholar 

  44. Reier, P. J. Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx 1, 424–451 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Meletis, K. et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 6, e182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Friling, S. et al. Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc. Natl Acad. Sci. USA 106, 7613–7618 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Perrier, A. L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 12543–12548 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Wada, T. et al. Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PloS ONE 4, e6722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brüstle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  PubMed  Google Scholar 

  52. McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Nistor, G. I., Totoiu, M. O., Haque, N., Carpenter, M. K. & Keirstead, H. S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 385–396 (2005).

    Article  PubMed  Google Scholar 

  54. Keirstead, H. S. et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25, 4694–4705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharp, J., Frame, J., Siegenthaler, M., Nistor, G. & Keirstead, H. S. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28, 152–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hofstetter, C. P. et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. 8, 346–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C. M. & Fehlings, M. G. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J. Neurosci. 26, 3377–3389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ogawa, Y. et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. 69, 925–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Pfeifer, K. et al. Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen. Med. 1, 255–266 (2006).

    Article  PubMed  Google Scholar 

  60. Han, S. S., Kang, D. Y., Mujtaba, T., Rao, M. S. & Fischer, I. Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp. Neurol. 177, 360–375 (2002).

    Article  PubMed  Google Scholar 

  61. Lepore, A. C. & Fischer, I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp. Neurol. 194, 230–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Anderson, D. K., Howland, D. R. & Reier, P. J. Fetal neural grafts and repair of the injured spinal cord. Brain Pathol. 5, 451–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Reier, P. J., Stokes, B. T., Thompson, F. J. & Anderson, D. K. Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. Exp. Neurol. 115, 177–188 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Kerr, D. A. et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J. Neurosci. 23, 5131–5140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harper, J. M. et al. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc. Natl Acad. Sci. USA 101, 7123–7128 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bonner, J. F., Blesch, A., Neuhuber, B. & Fischer, I. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J. Neurosci. Res. 88, 1182–1192 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cao, Q. et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J. Neurosci. 25, 6947–6957 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Davies, J. E. et al. Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury. J. Biol. 7, 24 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Syková, E. et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 15, 675–687 (2006).

    Article  PubMed  Google Scholar 

  70. Kopen, G. C., Prockop, D. J. & Phinney, D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl Acad. Sci. USA 96, 10711–10716 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eglitis, M. A. & Mezey, E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl Acad. Sci. USA 94, 4080–4085 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, Y. & Rao, M. S. Transdifferentiation—fact or artifact. J. Cell Biochem. 88, 29–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Mori, F., Himes, B. T., Kowada, M., Murray, M. & Tessler, A. Fetal spinal cord transplants rescue some axotomized rubrospinal neurons from retrograde cell death in adult rats. Exp. Neurol. 143, 45–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Tang, B. L. & Low, C. B. Genetic manipulation of neural stem cells for transplantation into the injured spinal cord. Cell. Mol. Neurobiol. 27, 75–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Tobias, C. A. et al. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp. Neurol. 184, 97–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Schwab, M. E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Richardson, P. M., McGuinness, U. M. & Aguayo, A. J. Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265 (1980).

    Article  CAS  PubMed  Google Scholar 

  78. Houle, J. D. Demonstration of the potential for chronically injured neurons to regenerate axons into intraspinal peripheral nerve grafts. Exp. Neurol. 113, 1–9 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Levi, A. D. et al. Peripheral nerve grafts promoting central nervous system regeneration after spinal cord injury in the primate. J. Neurosurgery 96, 197–205 (2002).

    Google Scholar 

  80. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, A., Xu, X. M., Kleitman, N. & Bunge, M. B. Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp. Neurol. 138, 261–276 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Paino, C. L. & Bunge, M. B. Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord. Exp. Neurol. 114, 254–257 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Ramón-Cueto, A., Plant, G. W., Avila, J. & Bunge, M. B. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J. Neurosci. 18, 3803–3815 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Féron, F. et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128, 2951–2960 (2005).

    Article  PubMed  Google Scholar 

  85. Saberi, H. et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci. Lett. 443, 46–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Hofstetter, C. P. et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl Acad. Sci. USA 99, 2199–2204 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gu, W. et al. Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology doi:10.1111/j.1440-1789.2009.01063.x.

  88. Jin, Y., Fischer, I., Tessler, A. & Houle, J. D. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp. Neurol. 177, 265–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Y. et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J. Neurosci. 19, 4370–4387 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Taylor, L., Jones, L., Tuszynski, M. H. & Blesch, A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J. Neurosci. 26, 9713–9721 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu, P., Yang, H., Jones, L. L., Filbin, M. T. & Tuszynski, M. H. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci. 24, 6402–6409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bregman, B. S. et al. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog. Brain Res. 137, 257–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Kadoya, K. et al. Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron 64, 165–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tator, C. H. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59, 957–982 (2006).

    Article  PubMed  Google Scholar 

  95. Steeves, J. D. et al. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 45, 206–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Fawcett, J. W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45, 190–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Lammertse, D. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial design. Spinal Cord 45, 232–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Tuszynski, M. H. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP Panel: clinical trial inclusion/exclusion criteria and ethics. Spinal Cord 45, 222–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Magnus, T., Liu, Y., Parker, G. C. & Rao, M. S. Stem cell myths. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 9–22 (2008).

    Article  PubMed  Google Scholar 

  100. Blight, A. et al. Position statement on the sale of unproven cellular therapies for spinal cord injury: the international campaign for cures of spinal cord injury paralysis. Spinal Cord 47, 713–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Hawryluk, G. W., Rowland, J., Kwon, B. K. & Fehlings, M. G. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg. Focus 25, E14 (2008).

    Article  PubMed  Google Scholar 

  102. Knafo, S. & Choi, D. Clinical studies in spinal cord injury: moving towards successful trials. Br. J. Neurosurg. 22, 3–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Geffner, L. F. et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 17, 1277–1293 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Pal, R. et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11, 897–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Yoon, S. H. et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25, 2066–2073 (2007).

    Article  PubMed  Google Scholar 

  106. Mackay-Sim, A. et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131, 2376–2386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lima, C. et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil. Neural Repair 24, 10–22 (2010).

    Article  PubMed  Google Scholar 

  108. Knoller, N. et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J. Neurosurg. Spine 3, 173–181 (2005).

    Article  PubMed  Google Scholar 

  109. Moviglia, G. A. et al. Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 8, 202–209 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Lithium and blood cord cell for spinal cord injury. Chinese Spinal Cord Injury Network [online], (2007).

  111. Spinal Cord Injury Network USA [online], (2009).

  112. Alper, J. Geron gets green light for human trial of ES cell-derived product. Nat. Biotechnol. 27, 213–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Couzin, J. Biotechnology. Celebration and concern over US trial of embryonic stem cells. Science 323, 568 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Horner, P. J. et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Horky, L. L., Galimi, F., Gage, F. H. & Horner, P. J. Fate of endogenous stem/progenitor cells following spinal cord injury. J. Comp. Neurol. 498, 525–538 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mothe, A. J. & Tator, C. H. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 131, 177–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Kitada, M., Chakrabortty, S., Matsumoto, N., Taketomi, M. & Ide, C. Differentiation of choroid plexus ependymal cells into astrocytes after grafting into the pre-lesioned spinal cord in mice. Glia 36, 364–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Cao, Q. L., Howard, R. M., Dennison, J. B. & Whittemore, S. R. Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp. Neurol. 177, 349–359 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Yang, H. et al. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J. Neurosci. 26, 2157–2166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pearse, D. D. & Bunge, M. B. Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J. Neurotrauma 23, 438–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Ohori, Y. et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J. Neurosci. 26, 11948–11960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Feng, Q. et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28, 704–712 (2010).

    Article  PubMed  Google Scholar 

  128. Robbins, R. D., Prasain, N., Maier, B. F., Yoder, M. C. & Mirmira, R. G. Inducible pluripotent stem cells: not quite ready for prime time? Curr. Opin. Organ Transplant. 15, 61–67 (2009).

    Article  Google Scholar 

  129. Bulte, J. W. In vivo MRI cell tracking: clinical studies. AJR Am. J. Roentgenol. 193, 314–325 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Kessler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahni, V., Kessler, J. Stem cell therapies for spinal cord injury. Nat Rev Neurol 6, 363–372 (2010). https://doi.org/10.1038/nrneurol.2010.73

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.73

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing