Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oligoarticular and polyarticular JIA: epidemiology and pathogenesis

Abstract

Juvenile idiopathic arthritis (JIA) refers to a group of chronic childhood arthropathies of unknown etiology, currently classified into subtypes primarily on the basis of clinical features. Research has focused on the hypothesis that these subtypes arise through distinct etiologic pathways. In this Review, we discuss four subtypes of JIA: persistent oligoarticular, extended oligoarticular, rheumatoid-factor-positive polyarticular and rheumatoid-factor-negative polyarticular. These subtypes differ in prevalence between ethnic groups and are associated with different HLA alleles. Non-HLA genetic risk factors have also been identified, some of which reveal further molecular differences between these subtypes, while others suggest mechanistic overlap. Investigations of immunophenotypes also provide insights into subtype differences: adaptive immunity seems to have a prominent role in both polyarticular and oligoarticular JIA, and the more-limited arthritis observed in persistent oligoarticular JIA as compared with extended oligoarticular JIA may reflect more-potent immunoregulatory T-cell activity in the former. Tumor necrosis factor seems to be a key mediator of both polyarticular and oligoarticular JIA, especially in the extended oligoarticular subtype, although elevated levels of other cytokines are also observed. Limited data on monocytes, dendritic cells, B cells, natural killer T cells and neutrophils suggest that the contributions of these cells differ across subtypes of JIA. Within each subtype, however, common pathways seem to drive joint damage.

Key Points

  • Epidemiologic, genetic and immunophenotypic evidence suggests that oligoarticular (persistent and extended) and polyarticular (rheumatoid factor positive and negative) subtypes of juvenile idiopathic arthritis (JIA) are distinct etiopathological conditions

  • Reported incidence and prevalence of JIA vary widely, due partly to a lack of specific diagnostic tests and to the rarity of community-based studies

  • Inherited susceptibility factors (both HLA and non-HLA) generally differ among JIA subtypes, although the presence of some overlap in the latter suggests shared immunological pathways

  • Evidence supports a key role for T-cell-driven inflammation in oligoarticular and polyarticular JIA and suggests a contribution of regulatory T cells to limiting disease in persistent oligoarticular JIA

  • Dysregulation of cytokines, especially tumor necrosis factor, contribute to oligoarticular and polyarticular JIA pathogenesis, and persistent cytokine abnormalities suggest that clinical remission is a state of compensated inflammation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  2. Manners, P., Lesslie, J., Speldewinde, D. & Tunbridge, D. Classification of juvenile idiopathic arthritis: should family history be included in the criteria? J. Rheumatol. 30, 1857–1863 (2003).

    PubMed  Google Scholar 

  3. Tsitsami, E. et al. Positive family history of psoriasis does not affect the clinical expression and course of juvenile idiopathic arthritis patients with oligoarthritis. Arthritis Rheum. 49, 488–493 (2003).

    Article  PubMed  Google Scholar 

  4. Berntson, L. et al. HLA-B27 predicts a more extended disease with increasing age at onset in boys with juvenile idiopathic arthritis. J. Rheumatol. 35, 2055–2061 (2008).

    CAS  PubMed  Google Scholar 

  5. Stoll, M., Lio, P., Sundel, R. & Nigrovic, P. Comparison of Vancouver and International League of Associations for rheumatology classification criteria for juvenile psoriatic arthritis. Arthritis Rheum. 59, 51–58 (2008).

    Article  PubMed  Google Scholar 

  6. Hayem, F. Is Still's disease an autoinflammatory syndrome? Joint Bone Spine 76, 7–9 (2009).

    Article  PubMed  Google Scholar 

  7. Ravelli, A. & Martini, A. Juvenile idiopathic arthritis. Lancet 369, 767–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Manners, P. J. Delay in diagnosing juvenile arthritis. Med. J. Australia 171, 367–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Manners, P. J. & Diepeveen, D. A. Prevalence of juvenile chronic arthritis in a population of 12-year-old children in urban Australia. Pediatrics 98, 84–90 (1996).

    CAS  PubMed  Google Scholar 

  10. Mielants, H. et al. Prevalence of inflammatory rheumatic diseases in an adolescent urban student population, age 12 to 18, in Belgium. Clin. Exp. Rheumatol. 11, 563–567 (1993).

    CAS  PubMed  Google Scholar 

  11. Manners, P. J. & Bower, C. Worldwide prevalence of juvenile arthritis why does it vary so much? J. Rheumatol. 29, 1520–1530 (2002).

    PubMed  Google Scholar 

  12. Malleson, P. N., Fung, M. Y. & Rosenberg, A. M. The incidence of pediatric rheumatic diseases: results from the Canadian Pediatric Rheumatology Association Disease Registry. J. Rheumatol. 23, 1981–1987 (1996).

    CAS  PubMed  Google Scholar 

  13. Denardo, B. A., Tucker, L. B., Miller, L. C., Szer, I. S. & Schaller, J. G. Demography of a regional pediatric rheumatology patient population. Affiliated Children's Arthritis Centers of New England. J. Rheumatol. 21, 1553–1561 (1994).

    CAS  PubMed  Google Scholar 

  14. Oen, K., Fast, M. & Postl, B. Epidemiology of juvenile rheumatoid arthritis in Manitoba, Canada, 1975–1992: cycles in incidence. J. Rheumatol. 22, 745–750 (1995).

    CAS  PubMed  Google Scholar 

  15. Sacks, J. J., Helmick, C. G., Luo, Y-H., Ilowite, N. T. & Bowyer, S. Prevalence of and annual ambulatory health care visits for pediatric arthritis and other rheumatologic conditions in the United States in 2001–2004. Arthritis Rheum. 57, 1439–1445 (2007).

    Article  PubMed  Google Scholar 

  16. Saurenmann, R. K. et al. Epidemiology of juvenile idiopathic arthritis in a multiethnic cohort: ethnicity as a risk factor. Arthritis Rheum. 56, 1974–1984 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Ravelli, A. et al. Patients with antinuclear antibody-positive juvenile idiopathic arthritis constitute a homogeneous subgroup irrespective of the course of joint disease. Arthritis Rheum. 52, 826–832 (2005).

    Article  PubMed  Google Scholar 

  18. Schwartz, M. M., Simpson, P., Kerr, K. L. & Jarvis, J. N. Juvenile rheumatoid arthritis in African Americans. J. Rheumatol. 24, 1826–1829 (1997).

    CAS  PubMed  Google Scholar 

  19. Rosenberg, A. M., Petty, R. E., Oen, K. G. & Schroeder, M. L. Rheumatic diseases in Western Canadian Indian children. J. Rheumatol. 9, 589–592 (1982).

    CAS  PubMed  Google Scholar 

  20. Wu, C. J. et al. Clinical characteristics of juvenile rheumatoid arthritis in Taiwan. J. Microbiol. Immun. Infect. 34, 211–214 (2001).

    CAS  Google Scholar 

  21. See, Y., Koh, E. T. & Boey, M. L. One hundred and seventy cases of childhood-onset rheumatological disease in Singapore. Ann. Acad. Med. Singapore 27, 496–502 (1998).

    CAS  PubMed  Google Scholar 

  22. Fujikawa, S. & Okuni, M. A nationwide surveillance study of rheumatic diseases among Japanese children. Acta Paediatrica Japonica 39, 242–244 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Sawhney, S. & Magalhaes, C. Paediatric rheumatology—a global perspective. Best Pract. Res. Clin. Rheumatol. 20, 201–221 (2006).

    Article  PubMed  Google Scholar 

  24. Carvounis, P. E., Herman, D. C., Cha, S. & Burke, J. P. Incidence and outcomes of uveitis in juvenile rheumatoid arthritis, a synthesis of the literature. Graefes Arch. Clin. Exp. Ophthalmol. 244, 281–290 (2006).

    Article  PubMed  Google Scholar 

  25. Haffejee, I. E., Raga, J. & Coovadia, H. M. Juvenile chronic arthritis in black and Indian South African children. S. Afr. Med. J. 65, 510–514 (1984).

    CAS  PubMed  Google Scholar 

  26. Kurahara, D. K. et al. Visiting consultant clinics to study prevalence rates of juvenile rheumatoid arthritis and childhood systemic lupus erythematosus across dispersed geographic areas. J. Rheumatol. 34, 425–429 (2007).

    PubMed  Google Scholar 

  27. Mauldin, J., Cameron, H. D., Jeanotte, D., Solomon, G. & Jarvis, J. N. Chronic arthritis in children and adolescents in two Indian health service user populations. BMC Musculoskelet. Disord. 5, 30 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kaipiainen-Seppanen, O. & Savolainen, A. Incidence of chronic juvenile rheumatic diseases in Finland during 1980–1990. Clin. Exp. Rheumatol. 14, 441–444 (1996).

    CAS  PubMed  Google Scholar 

  29. Towner, S. R., Michet, C. J., O'Fallon, W. M. & Nelson, A. M. The epidemiology of juvenile arthritis in Rochester, Minnesota 1960–1979. Arthritis Rheum. 26, 1208–1213 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Peterson, L. S., Mason, T., Nelson, A. M., O'Fallon, W. M. & Gabriel, S. E. Juvenile rheumatoid arthritis in Rochester, Minnesota 1960–1993. Is the epidemiology changing? Arthritis Rheum. 39, 1385–1390 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Jarvis, J. N., Jiang, K., Petty, H. R. & Centola, M. Neutrophils: the forgotten cell in JIA disease pathogenesis. Pediatr. Rheumatol. Online J. 5, 13 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Prahalad, S. & Glass, D. N. A comprehensive review of the genetics of juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 6, 11 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Prahalad, S. et al. Familial aggregation of juvenile idiopathic arthritis. Arthritis Rheum. 50, 4022–4027 (2004).

    Article  PubMed  Google Scholar 

  34. Thompson, S. et al. A genome-wide scan for juvenile rheumatoid arthritis in affected sibpair families provides evidence of linkage. Arthritis Rheum. 50, 2920–2930 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Hinks, A. et al. Identification of a novel susceptibility locus for juvenile idiopathic arthritis by genome-wide association analysis. Arthritis Rheum. 60, 258–263 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murray, K. J. et al. Age-specific effects of juvenile rheumatoid arthritis-associated HLA alleles. Arthritis Rheum. 42, 1843–1853 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Zeggini, E., Donn, R., Ollier, W. E. R. & Thomson, W. Evidence for linkage of HLA loci in juvenile idiopathic oligoarthritis: independent effects of HLA-A and HLA-DRB1. Arthritis Rheum. 46, 2716–2720 (2002).

    Article  PubMed  Google Scholar 

  38. Garavito, G. et al. HLA-DRB1 alleles and HLA-DRB1 shared epitopes are markers for juvenile rheumatoid arthritis subgroups in Colombian mestizos. Hum. Immun. 65, 359–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, J. L. et al. HLA-DRB1 genotyping in patients with juvenile idiopathic arthritis in Taiwan. Eur. J. Immunogenet. 31, 185–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Alsaeid, K., Haider, M. Z., Sharma, P. N. & Ayoub, E. M. The prevalence of human leukocyte antigen (HLA) DR/DQ/DP alleles in Kuwaiti children with oligoarticular juvenile idiopathic arthritis. Rheumatol. Int. 26, 224–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Prahalad, S. et al. Juvenile rheumatoid arthritis: linkage to HLA demonstrated by allele sharing in affected sibpairs. Arthritis Rheum. 43, 2335–2338 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Hinks, A. et al. Association of the IL2RA/CD25 gene with juvenile idiopathic arthritis. Arthritis Rheum. 60, 251–257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prahalad, S., Shear, E. S., Thompson, S. D., Giannini, E. H. & Glass, D. N. Increased prevalence of familial autoimmunity in simplex and multiplex families with juvenile rheumatoid arthritis. Arthritis Rheum. 46, 1851–1856 (2002).

    Article  PubMed  Google Scholar 

  44. Prahalad, S. et al. Variants in TNFAIP3, STAT4, and C12orf30 loci associated with multiple autoimmune diseases are also associated with juvenile idiopathic arthritis. Arthritis Rheum. 60, 2124–2130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marciano, R. et al. A polymorphic variant inside the osteopontin gene shows association with disease course in oligoarticular juvenile idiopathic arthritis. Ann. Rheum. Dis. 65, 662–665 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Prelog, M. et al. Premature aging of the immune system in children with juvenile idiopathic arthritis. Arthritis Rheum. 58, 2153–2162 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Lorenzi, A. R. et al. Thymic function in juvenile idiopathic arthritis. Ann. Rheum. Dis. 68, 983–990 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Haines, C. et al. Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J. Exp. Med. 206, 275–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wouters, C. H. P., Ceuppens, J. L. & Stevens, E. A. M. Different circulating lymphocyte profiles in patients with different subtypes of juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 20, 239–248 (2002).

    CAS  PubMed  Google Scholar 

  50. Murray, K. J. et al. Immunohistological characteristics of T cell infiltrates in different forms of childhood onset chronic arthritis. J. Rheumatol. 23, 2116–2124 (1996).

    CAS  PubMed  Google Scholar 

  51. Thompson, S. D. et al. Comparative sequence analysis of the human T cell receptor beta chain in juvenile rheumatoid arthritis and juvenile spondylarthropathies: evidence for antigenic selection of T cells in the synovium. Arthritis Rheum. 41, 482–497 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Wedderburn, L. R., Patel, A., Varsani, H. & Woo, P. Divergence in the degree of clonal expansions in inflammatory T cell subpopulations mirrors HLA-associated risk alleles in genetically and clinically distinct subtypes of childhood arthritis. Int. Immunol. 13, 1541–1550 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kamphuis, S. et al. Novel self-epitopes derived from aggrecan, fibrillin, and matrix metalloproteinase-3 drive distinct autoreactive T-cell responses in juvenile idiopathic arthritis and in health. Arthritis Res. Ther. 8, R178 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sedlackova, L., Velek, J., Vavrincova, P. & Hromadnikova, I. Peripheral blood mononuclear cell responses to heat shock proteins and their derived synthetic peptides in juvenile idiopathic arthritis patients. Inflamm. Res. 55, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. De Graeff-Meeder, E. R. et al. Recognition of human 60 kD heat shock protein by mononuclear cells from patients with juvenile chronic arthritis. Lancet 337, 1368–1372 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen, T. T. H. et al. Heat shock protein 70 membrane expression on fibroblast-like synovial cells derived from synovial tissue of patients with rheumatoid and juvenile idiopathic arthritis. Scand. J. Rheumatol. 35, 447–453 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Prelog, M. et al. Quantitative alterations of CD8+ T cells in juvenile idiopathic arthritis patients in remission. Clin. Rheumatol. 28, 385–389 (2009).

    Article  PubMed  Google Scholar 

  58. Massa, M. et al. Proinflammatory responses to self HLA epitopes are triggered by molecular mimicry to Epstein–Barr virus proteins in oligoarticular juvenile idiopathic arthritis. Arthritis Rheum. 46, 2721–2729 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Stechova, K. et al. In vitro autoreactivity against skin and synovial cells in patients with juvenile idiopathic and rheumatoid arthritis. Pathobiology 70, 76–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Wedderburn, L. R., Robinson, N., Patel, A., Varsani, H. & Woo, P. Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum. 43, 765–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Saxena, N., Aggarwal, A. & Misra, R. Elevated concentrations of monocyte derived cytokines in synovial fluid of children with enthesitis related arthritis and polyarticular types of juvenile idiopathic arthritis. J. Rheumatol. 32, 1349–1353 (2005).

    CAS  PubMed  Google Scholar 

  62. Gattorno, M. et al. Phenotypic and functional characterisation of CCR7+ and CCR7 CD4+ memory T cells homing to the joints in juvenile idiopathic arthritis. Arthritis Res. Ther. 7, R256–R267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martini, G. et al. CXCR3/CXCL10 expression in the synovium of children with juvenile idiopathic arthritis. Arthritis Res. Ther. 7, R241–R249 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pharoah, D. S. et al. Expression of the inflammatory chemokines CCL5, CCL3 and CXCL10 in juvenile idiopathic arthritis, and demonstration of CCL5 production by an atypical subset of CD8+ T cells. Arthritis Res. Ther. 8, R50 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Appay, V. et al. RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell surface aggregation. Int. Immunol. 12, 1173–1182 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Chiesa, S. et al. Cytokine flexibility of early and differentiated memory T helper cells in juvenile idiopathic arthritis. J. Rheumatol. 31, 2048–2054 (2004).

    CAS  PubMed  Google Scholar 

  67. Murray, K. J. et al. Contrasting cytokine profiles in the synovium of different forms of juvenile rheumatoid arthritis and juvenile spondyloarthropathy: prominence of interleukin 4 in restricted disease. J. Rheumatol. 25, 1388–1398 (1998).

    CAS  PubMed  Google Scholar 

  68. Jarvis, J. N. et al. Novel approaches to gene expression analysis of active polyarticular juvenile rheumatoid arthritis. Arthritis Res. Ther. 6, R15–R32 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Nistala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Agarwal, S., Misra, R. & Aggarwal, A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J. Rheumatol. 35, 515–519 (2008).

    CAS  PubMed  Google Scholar 

  72. Milojevic, D., Nguyen, K. D., Wara, D. & Mellins, E. D. Regulatory T cells and their role in rheumatic diseases: a potential target for novel therapeutic development. Pediatr. Rheumatol. Online J. 6, 20 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Smolewska, E., Brozik, H., Smolewski, P., Darzynkiewicz, Z. & Stanczyk, J. Regulation of peripheral blood and synovial fluid lymphocyte apoptosis in juvenile idiopathic arthritis. Scand. J. Rheumatol. 33, 7–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Ruprecht, C. R. et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J. Exp. Med. 201, 1793–1803 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. de Kleer, I. M. et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 172, 6435–6443 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Wei, C.-M. et al. Frequency and phenotypic analysis of CD4+CD25+ regulatory T cells in children with juvenile idiopathic arthritis. J. Microbiol. Immunol. Infect. 41, 78–87 (2008).

    PubMed  Google Scholar 

  77. Massa, M. et al. Differential recognition of heat-shock protein dnaJ-derived epitopes by effector and Treg cells leads to modulation of inflammation in juvenile idiopathic arthritis. Arthritis Rheum. 56, 1648–1657 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. de Kleer, I. M. et al. The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30+ T cells directed to human heat-shock protein 60 capable of producing the regulatory cytokine interleukin-10. Arthritis Rheum. 48, 2001–2010 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Kamphuis, S. et al. Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet 366, 50–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Gattorno, M. et al. Distinct expression pattern of IFN-alpha and TNF-alpha in juvenile idiopathic arthritis synovial tissue. Rheumatology (Oxford) 46, 657–665 (2007).

    Article  CAS  Google Scholar 

  81. Smolewska, E. et al. Distribution and clinical significance of blood dendritic cells in children with juvenile idiopathic arthritis. Ann. Rheum. Dis. 67, 762–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Varsani, H., Patel, A., van Kooyk, Y., Woo, P. & Wedderburn, L. R. Synovial dendritic cells in juvenile idiopathic arthritis (JIA) express receptor activator of NF-κB (RANK). Rheumatology (Oxford) 42, 583–590 (2003).

    CAS  Google Scholar 

  83. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. van Rossum, M. et al. Anti-cyclic citrullinated peptide (anti-CCP) antibodies in children with juvenile idiopathic arthritis. J. Rheumatol. 30, 825–828 (2003).

    CAS  PubMed  Google Scholar 

  85. Griffin, T. et al. Gene expression signatures in polyarticular juvenile idiopathic arthritis demonstrate disease heterogeneity and offer a molecular classification of disease subsets. Arthritis Rheum. 60, 2113–2123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Taniguchi, O. et al. The Leu-1 B-cell subpopulation in patients with rheumatoid arthritis. J. Clin. Immunol. 7, 441–448 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. Looney, R. J. B cell-targeted therapy for rheumatoid arthritis: an update on the evidence. Drugs 66, 625–639 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Mangge, H. et al. Serum cytokines in juvenile rheumatoid arthritis. Correlation with conventional inflammation parameters and clinical subtypes. Arthritis Rheum. 38, 211–220 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Yilmaz, M., Kendirli, S. G., Altintas, D., Bingol, G. & Antmen, B. Cytokine levels in serum of patients with juvenile rheumatoid arthritis. Clin. Rheumatol. 20, 30–35 (2001).

    CAS  PubMed  Google Scholar 

  90. Lotito, A. P. N., Campa, A., Silva, C. A. A., Kiss, M. H. B. & Mello, S. B. V. Interleukin 18 as a marker of disease activity and severity in patients with juvenile idiopathic arthritis. J. Rheumatol. 34, 823–830 (2007).

    CAS  PubMed  Google Scholar 

  91. de Jager, W. et al. Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study. Ann. Rheum. Dis. 66, 589–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Peake, N. J. et al. Interleukin-6 signalling in juvenile idiopathic arthritis is limited by proteolytically cleaved soluble interleukin-6 receptor. Rheumatology (Oxford) 45, 1485–1489 (2006).

    Article  CAS  Google Scholar 

  93. Prince, F. H. et al. Long-term follow-up on effectiveness and safety of etanercept in JIA: the Dutch national register. Ann. Rheum. Dis. 68, 635–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Rooney, M. et al. Tumour necrosis factor alpha and its soluble receptors in juvenile chronic arthritis. Rheumatology (Oxford) 39, 432–438 (2000).

    Article  CAS  Google Scholar 

  95. Foell, D., Wittkowski, H. & Roth, J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 3, 382–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Foell, D., Wittkowski, H., Vogl, T. & Roth, J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 81, 28–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Schulze zur Wiesch, A. et al. Myeloid related proteins MRP8/MRP14 may predict disease flares in juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 22, 368–373 (2004).

    CAS  PubMed  Google Scholar 

  98. Foell, D. et al. Monitoring neutrophil activation in juvenile rheumatoid arthritis by S100A12 serum concentrations. Arthritis Rheum. 50, 1286–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Jarvis, J. N. et al. Evidence for chronic, peripheral activation of neutrophils in polyarticular juvenile rheumatoid arthritis. Arthritis Res. Ther. 8, R154 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jarvis, J. et al. Gene expression profiling in neutrophils from children with polyarticular juvenile idiopathic arthritis. Arthritis Rheum. 60, 1488–1495 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sandborg, C. et al. Candidate early predictors for progression to joint damage in systemic juvenile idiopathic arthritis. J. Rheumatol. 33, 2322–2329 (2006).

    PubMed  Google Scholar 

  102. Singh-Grewal, D., Schneider, R., Bayer, N. & Feldman, B. M. Predictors of disease course and remission in systemic juvenile idiopathic arthritis: significance of early clinical and laboratory features. Arthritis Rheum. 54, 1595–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Sarma, P. K., Misra, R. & Aggarwal, A. Elevated serum receptor activator of NFκB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP)3, and ProMMP1 in patients with juvenile idiopathic arthritis. Clin. Rheumatol. 27, 289–294 (2008).

    Article  PubMed  Google Scholar 

  104. Peake, N. J. et al. Levels of matrix metalloproteinase (MMP)-1 in paired sera and synovial fluids of juvenile idiopathic arthritis patients: relationship to inflammatory activity, MMP-3 and tissue inhibitor of metalloproteinases-1 in a longitudinal study. Rheumatology (Oxford) 44, 1383–1389 (2005).

    Article  CAS  Google Scholar 

  105. Spelling, P., Bonfa, E., Caparbo, V. F. & Pereira, R. M. R. Osteoprotegerin/RANKL system imbalance in active polyarticular-onset juvenile idiopathic arthritis: a bone damage biomarker? Scand. J. Rheumatol. 37, 439–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Caparbo, V. F., Prada, F., Silva, C. A. A., Regio, P. L. & Pereira, R. M. R. Serum from children with polyarticular juvenile idiopathic arthritis (pJIA) inhibits differentiation, mineralization and may increase apoptosis of human osteoblasts “in vitro”. Clin. Rheumatol. 28, 71–77 (2009).

    Article  PubMed  Google Scholar 

  107. Hashkes, P. & Laxer, R. Medical treatment of juvenile idiopathic arthritis. JAMA 294, 1671–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Saurenmann, R. K. et al. Prevalence, risk factors, and outcome of uveitis in juvenile idiopathic arthritis: a long-term followup study. Arthritis Rheum. 56, 647–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Bolt, I., Cannizzaro, E., Seger, R. & Saurenmann, R. Risk factors and longterm outcome of juvenile idiopathic arthritis-associated uveitis in Switzerland. J. Rheumatol. 35, 703–706 (2008).

    PubMed  Google Scholar 

  110. Low, J. et al. Determination of anti-cyclic citrullinated peptide antibodies in the sera of patients with juvenile idiopathic arthritis. J. Rheumatol. 31, 1829–1833 (2004).

    CAS  PubMed  Google Scholar 

  111. Lovell, D. et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N. Engl. J. Med. 342, 763–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Lovell, D. et al. Long-term efficacy and safety of etanercept in children with polyarticular-course juvenile rheumatoid arthritis: interim results from an ongoing multicenter, open-label, extended-treatment trial. Arthritis Rheum. 48, 218–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Ravelli, A. et al. The extended oligoarticular subtype is the best predictor of methotrexate efficacy in juvenile idiopathic arthritis. J. Pediatr. 135, 316–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Ruperto, N. et al. A randomized trial of parenteral methotrexate comparing an intermediate dose with a higher dose in children with juvenile idiopathic arthritis who failed to respond to standard doses of methotrexate. Arthritis Rheum. 50, 2191–2201 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Fernandez-Via, M., Fink, C. W. & Stastny, P. HLA associations in juvenile arthritis. Clin. Exp. Rheumatol. 12, 205–214 (1994).

    Google Scholar 

  116. Thomson, W. et al. Juvenile idiopathic arthritis classified by the ILAR criteria: HLA associations in UK patients. Rheumatology (Oxford) 41, 1183–1189 (2002).

    Article  CAS  Google Scholar 

  117. Zeggini, E. et al. Association of HLA-DRB1*13 with susceptibility to uveitis in juvenile idiopathic arthritis in two independent data sets. Rheumatology (Oxford) 45, 972–974 (2006).

    Article  CAS  Google Scholar 

  118. Grassi, A., Corona, F., Casellato, A., Carnelli, V. & Bardare, M. Prevalence and outcome of juvenile idiopathic arthritis-associated uveitis and relation to articular disease. J. Rheumatol. 34, 1139–1145 (2007).

    PubMed  Google Scholar 

  119. Zulian, F. et al. Early predictors of severe course of uveitis in oligoarticular juvenile idiopathic arthritis. J. Rheumatol. 29, 2446–2453 (2002).

    PubMed  Google Scholar 

  120. Donn, R. P., Shelley, E., Ollier, W. E. & Thomson, W. A novel 5′-flanking region polymorphism of macrophage migration inhibitory factor is associated with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 44, 1782–1785 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Donn, R. et al. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum. 46, 2402–2409 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Donn, R. et al. A functional promoter haplotype of macrophage migration inhibitory factor is linked and associated with juvenile idiopathic arthritis. Arthritis Rheum. 50, 1604–1610 (2004).

    Article  PubMed  Google Scholar 

  123. Viken, M. K. et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun. 6, 1271–1273 (2005).

    Article  CAS  Google Scholar 

  124. Hinks, A. et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum. 52, 1694–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Cinek, O. et al. No independent role of the −1123 G>C and A>G variants in the association of PTPN22 with type 1 diabetes and juvenile idiopathic arthritis in two Caucasian populations. Diabetes Res. Clin. Pract. 76, 297–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Sanjeevi, C. B. et al. Polymorphism at NRAMP1 and D2S1471 loci associated with juvenile rheumatoid arthritis. Arthritis Rheum. 43, 1397–1404 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Runstadler, J. A. et al. Association of SLC11A1 (NRAMP1) with persistent oligoarticular and polyarticular rheumatoid factor-negative juvenile idiopathic arthritis in Finnish patients: haplotype analysis in Finnish families. Arthritis Rheum. 52, 247–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Epplen, C. et al. Immunoprinting excludes many potential susceptibility genes as predisposing to early onset pauciarticular juvenile chronic arthritis except HLA class II and TNF. Eur. J. Immunogenet. 22, 311–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Nikitina Zake, L., Cimdina, I., Rumba, I., Dabadghao, P. & Sanjeevi, C. B. Major histocompatibility complex class I chain related (MIC) A gene, TNFα microsatellite alleles and TNFβ alleles in juvenile idiopathic arthritis patients from Latvia. Hum. Immunol. 63, 418–423 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Schmeling, H., Wagner, U., Peterson, A. & Horneff, G. Tumor necrosis factor alpha promoter polymorphisms in patients with juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 24, 103–108 (2006).

    CAS  PubMed  Google Scholar 

  131. Lamb, R., Thomson, W., Ogilvie, E. & Donn, R. Wnt-1-inducible signaling pathway protein 3 and susceptibility to juvenile idiopathic arthritis. Arthritis Rheum. 52, 3548–3553 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. De Benedetti, F. et al. Functional and prognostic relevance of the −173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 48, 1398–1407 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Berdeli, A. et al. Association of macrophage migration inhibitory factor gene −173 G/C polymorphism with prognosis in Turkish children with juvenile rheumatoid arthritis. Rheumatol. Int. 26, 726–731 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Ozen, S. et al. Tumour necrosis factor alpha G→A −238 and G→A −308 polymorphisms in juvenile idiopathic arthritis. Rheumatology (Oxford) 41, 223–227 (2002).

    Article  CAS  Google Scholar 

  135. Schmeling, H. & Horneff, G. Tumour necrosis factor alpha promoter polymorphisms and etanercept therapy in juvenile idiopathic arthritis. Rheumatol. Int. 27, 383–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Mourão, A. F. et al. Tumor necrosis factor-α −308 genotypes influence inflammatory activity and TNF-α serum concentrations in children with juvenile idiopathic arthritis. J. Rheumatol. 36, 837–842 (2009).

    Article  PubMed  CAS  Google Scholar 

  137. McDowell, T. L., Symons, J. A., Ploski, R., Forre, O. & Duff, G. W. A genetic association between juvenile rheumatoid arthritis and a novel interleukin-1 alpha polymorphism. Arthritis Rheum. 38, 221–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Vencovsky, J. et al. Higher frequency of allele 2 of the interleukin-1 receptor antagonist gene in patients with juvenile idiopathic arthritis. Arthritis Rheum. 44, 2387–2391 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Cimaz, R. et al. IL1 and TNF gene polymorphisms in patients with juvenile idiopathic arthritis treated with TNF inhibitors. Ann. Rheum. Dis. 66, 900–904 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stock, C. J. W. et al. Comprehensive association study of genetic variants in the IL-1 gene family in systemic juvenile idiopathic arthritis. Genes Immun. 9, 349–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Fishman, D. et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 102, 1369–1376 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ogilvie, E. M. et al. The −174G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families. Arthritis Rheum. 48, 3202–3206 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Crawley, E. et al. Polymorphic haplotypes of the interleukin-10 5′ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum. 42, 1101–1108 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Fife, M. S. et al. Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis Res. Ther. 8, R148 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Bierbaum, S., Sengler, C., Gerhold, K., Berner, R. & Heinzmann, A. Polymorphisms within interleukin 15 are associated with juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 24, 219 (2006).

    CAS  PubMed  Google Scholar 

  146. Sugiura, T. et al. A promoter haplotype of the interleukin-18 gene is associated with juvenile idiopathic arthritis in the Japanese population. Arthritis Res. Ther. 8, R60 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Crawley, E., Kon, S. & Woo, P. Hereditary predisposition to low interleukin-10 production in children with extended oligoarticular juvenile idiopathic arthritis. Rheumatology (Oxford) 40, 574–578 (2001).

    Article  CAS  Google Scholar 

  148. Petty, R. E. Classification of childhood arthritis: a work in progress. Baillieres Clin. Rheumatol. 12, 181–190 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work could not be cited due to space constraints. We thank Dr Daniel Lovell (Cincinnati Children's Hospital Medical Center, Division of Rheumatology) for helpful comments and Ariana Peck for assistance with bibliographical research. This work was supported by funding from the NIH, the Dana Foundation and the Wasie Foundation. D. Milojevic was supported by the American College of Rheumatology Research and Education Foundation Academic Re-entry Award. J. L. Park is supported by the American College of Rheumatology Research and Education Foundation Physician Scientist Development Award; she was also supported by a grant from the National Institute of Arthritis and Musculoskeletal and Skin Diseases. The content of this Review is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Arthritis and Musculoskeletal and Skin Diseases or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth D. Mellins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macaubas, C., Nguyen, K., Milojevic, D. et al. Oligoarticular and polyarticular JIA: epidemiology and pathogenesis. Nat Rev Rheumatol 5, 616–626 (2009). https://doi.org/10.1038/nrrheum.2009.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing