Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transforming growth factor β as a therapeutic target in systemic sclerosis

Abstract

Transforming growth factor β (TGF-β) is a pleiotropic cytokine with vital homeostatic functions. Aberrant TGF-β expression is implicated in the pathogenesis of fibrosis in systemic sclerosis (SSc); thus, TGF-β represents a molecular therapeutic target in this disease. Anti-TGF-β monoclonal antibody has been evaluated in a small trial of early SSc, with disappointing results. Antibodies against the αvβ6 integrin that prevent latent TGF-β activation, however, have shown promise in preclinical studies. Small-molecule inhibitors of TGF-β-receptor activity are effective in animal models of fibrosis. Imatinib mesylate and related tyrosine kinase inhibitors also block TGF-β pathways and abrogate fibrotic responses. The blocking of TGF-β activity might lead to spontaneous immune activation, epithelial hyperplasia and impaired wound healing. Loss of immune tolerance is a potential concern in an autoimmune disease such as SSc. Novel insights from microarray-based gene expression analyses and studies of genetic polymorphisms in TGF-β signaling could aid in identifying patients who are most likely to respond to anti-TGF-β treatment. This intervention promises to have a major impact on the treatment of SSc. Concerns regarding efficacy and safety and whether biomarkers can indicate these features, questions regarding appropriate dosing and timing of therapy, and identification of potential responders are critical challenges ahead.

Key Points

  • Systemic sclerosis (SSc) is a highly heterogeneous fibrotic condition that has no effective disease-modifying therapy; arresting disease progression and reversing organ damage will require antifibrotic therapies

  • Fibrosis is associated with fibroblast activation mediated by transforming growth factor β (TGF-β); therefore, blocking TGF-β signaling pathways is a rational approach to antifibrotic therapy

  • Targeting the TGF-β pathway with biologic therapies prevents fibrosis in animal models, but efficacy has not yet been shown in patients with SSc

  • Small-molecule inhibitors of tyrosine kinases block TGF-β signaling and prevent TGF-β-driven fibrotic responses in vitro and in vivo; clinical trials are evaluating two such inhibitors in patients with SSc

  • Blocking the TGF-β pathway could be associated with adverse effects such as loss of immune tolerance and spontaneous autoimmunity, epithelial hyperplasia, and defective tissue repair

  • Key challenges for the development of anti-TGF-β therapies in SSc include determining optimum timing and dosing, and developing biomarkers of biological response and clinical efficacy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major components of the TGF-β signaling pathway.
Figure 2: Strategies for blocking TGF-β pathways.

Similar content being viewed by others

References

  1. Varga, J. & Abraham, D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117, 557–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blobe, G. C. et al. Role of transforming growth factor beta in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Prud'homme, G. J. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab. Invest. 87, 1077–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-beta signaling through SMADs. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Gordon, K. J. & Blobe, G. C. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim. Biophys. Acta 1782, 197–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Valle, L. et al. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science 321, 1361–1365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeng, Q. et al. TGFBR1 haploinsufficiency is a potent modifier of colorectal cancer development. Cancer Res. 69, 678–686 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saxena, V. et al. Dual roles of immunoregulatory cytokine TGF-beta in the pathogenesis of autoimmunity-mediated organ damage. J. Immunol. 180, 1903–1912 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sonnylal, S. et al. Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum. 56, 334–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, M. & Varga, J. In perspective: murine models of scleroderma. Curr. Rheumatol. Rep. 10, 173–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Whitfield, M. L. et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc. Natl Acad. Sci. USA 100, 12319–12324 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Milano, A. et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE 3, e2696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Annes, J. P. et al. Making sense of latent TGF-β activation. J. Cell Sci. 116, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Varga, J. Scleroderma and SMADs: dysfunctional SMAD family dynamics culminating in fibrosis. Arthritis Rheum. 46, 1703–1713 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Rahimi, R. A. & Leof, E. B. TGF-beta signaling: a tale of two responses. J. Cell Biochem. 102, 593–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Derynck, R. & Zhang, Y. E. SMAD-dependent and SMAD-independent pathways in TGF-beta family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, X. et al. PPM1A functions as a SMAD phosphatase to terminate TGF-β signaling. Cell 125, 915–928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin, F. et al. MAN1, an integral protein of the inner nuclear membrane, binds SMAD2 and SMAD3 and antagonizes transforming growth factor-beta signaling. Hum. Mol. Genet. 14, 437–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Di Guglielmo, G. M. et al. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat. Cell Biol. 5, 410–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Galdo, F. D. et al. Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum. 58, 2854–2865 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tourkina, E. et al. Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L843–L861 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Ziyadeh, F. N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal anti-transforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA 97, 8015–8020 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. McCormick, L. L. et al. Anti-TGF-beta treatment prevents skin and lung fibrosis in murine sclerodermatous graft-versus-host disease: a model for human scleroderma. J. Immunol. 163, 5693–5699 (1999).

    CAS  PubMed  Google Scholar 

  25. Fukasawa, H. et al. Treatment with anti-TGF-beta antibody ameliorates chronic progressive nephritis by inhibiting SMAD/TGF-beta signaling. Kidney Int. 65, 63–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Denton, C. P. et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 56, 323–333.

  27. Mead, A. L. et al. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest. Ophthalmol. Vis. Sci. 44, 3394–3401 (2003).

    Article  PubMed  Google Scholar 

  28. ClinicalTrials.gov [http://clinicaltrials.gov/ct/show/NCT00125385] (accessed 20 January 2009).

  29. Juárez, P. et al. Soluble betaglycan reduces renal damage progression in db/db mice. Am. J. Physiol. Renal Physiol. 292, F321–F329 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Santiago, B. et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J. Invest. Dermatol. 125, 450–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Kaminski, N. et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc. Natl Acad. Sci. USA 97, 1778–1783 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Horan, G. S. et al. Partial inhibition of integrin α(v)β6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177, 56–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Puthawala, K. et al. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 177, 82–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Horan, G. S. et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177, 56–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Mori, Y. et al. Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts. Arthritis Rheum. 50, 4008–4021 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ishida, W. et al. Intracellular TGF-beta receptor blockade abrogates SMAD-dependent fibroblast activation in vitro and in vivo. J. Invest. Dermatol. 126, 1733–1744 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Moon, J. A. et al. IN-1130, a novel transforming growth factor-β type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int. 70, 1234–1243.

  40. de Gouville, A. C. et al. Inhibition of TGF-beta signaling by an TGFBR1 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br. J. Pharmacol. 145, 166–177.

  41. Fu, K. et al. SM16, an orally active TGF-beta type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arterioscler. Thromb. Vasc. Biol. 28, 665–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Bonniaud, P. et al. Progressive transforming growth factor beta1-induced lung fibrosis is blocked by an orally active TGFBR1 kinase inhibitor. Am. J. Respir. Crit. Care Med. 171, 889–898.

  43. Petersen, M. et al. Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney Int. 73, 705–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Itoh, S. & ten Dijke, P. Negative regulation of TGF-beta receptor/SMAD signal transduction. Curr. Opin. Cell Biol. 19, 176–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Nakao, A. et al. Transient gene transfer and expression of SMAD7 prevents bleomycin-induced lung fibrosis in mice. J. Clin. Invest. 104, 5–11 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nie, J. et al. SMAD7 gene transfer inhibits peritoneal fibrosis. Kidney Int. 72, 1336–1344 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Saika, S. et al. Effect of SMAD7 gene overexpression on transforming growth factor beta-induced retinal pigment fibrosis in a proliferative vitreoretinopathy mouse model. Arch. Ophthalmol. 125, 647–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Lan, H. Y. SMAD7 as a therapeutic agent for chronic kidney diseases. Front. Biosci. 13, 4984–4992 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Shukla, M. N. et al. Hepatocyte growth factor inhibits epithelial to myofibroblast transition in lung cells via SMAD7. Am. J. Respir. Cell. Mol. Biol. (2008).

  50. Angion Biomedica Corp [http://angion.com/products.asp] (accessed 20 January 2009).

  51. Weng, H. et al. IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor SMADs. J. Hepatol. 46, 295–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, X. et al. Paclitaxel modulates TGFbeta signaling in scleroderma skin grafts in immunodeficient mice. PLoS Med. 2, e354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, B. M. & Hoffmann, F. M. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the SMAD-binding peptide aptamer Trx-SARA. Mol. Biol. Cell 17, 3819–3831 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Daniels, C. E. et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest. 114, 1308–1316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishida, W. et al. Novel role of c-Abl tyrosine kinase in profibrotic TGF-Beta responses: selective modulation by the anticancer drug imatinib methylate (gleevec). Arthitis Rheum. 54, S776 (2006).

    Google Scholar 

  56. Bhattacharyya, S. et al. c-Abl mediates profibrotic responses in fibroblasts via Egr-1: inhibition by imatinib. Oncogene (in press).

  57. Chung, L. et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum. (in press).

  58. Krause, D. S. & Van Etten, R. A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 353, 172–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Distler, J. H. et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 56, 311–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Soria, A. et al. The effect of imatinib (Glivec) on scleroderma and normal dermal fibroblasts: a preclinical study. Dermatology 216, 109–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Pannu, J. et al. SMAD1 pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate. Arthritis Rheum. 58, 2528–2537 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Aono, Y. et al. Imatinib as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. Care Med. 171, 1279–1285 (2005).

    Article  PubMed  Google Scholar 

  63. Wang, S. et al. Imatinib mesylate blocks a non-SMAD TGF-beta pathway and reduces renal fibrogenesis in vivo. FASEB J. 19, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Vittal, R. et al. Effects of the protein kinase inhibitor, imatinib mesylate, on epithelial/mesenchymal phenotypes: implications for treatment of fibrotic diseases. J. Pharmacol. Exp. Ther. 321, 35–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. van Daele, P. L. et al. Is imatinib mesylate a promising drug in systemic sclerosis? Arthritis Rheum. 58, 2549–2552 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Sabnani, I. et al. A novel therapeutic approach to the treatment of scleroderma-associated pulmonary complications: safety and efficacy of combination therapy with imatinib and cyclophosphamide. Rheumatology (Oxford) 48, 49–52 (2009).

    Article  CAS  Google Scholar 

  67. Sfikakis, P. P. et al. Imatinib for the treatment of refractory, diffuse systemic sclerosis. Rheumatology (Oxford) 47, 735–737 (2008).

    Article  CAS  Google Scholar 

  68. Magro, L. et al. Efficacy of imatinib mesylate in the treatment of refractory sclerodermatous chronic GVHD. Bone Marrow Transplant 42, 757–760 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Moreno-Romero, J. A. et al. Imatinib as a potential treatment for sclerodermatous chronic graft-vs-host disease. Arch. Dermatol. 144, 1106–1109 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Kay, J. & High, W. A. Imatinib mesylate treatment of nephrogenic systemic fibrosis. Arthritis Rheum. 58, 2543–2548 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Azuma, M. et al. Role of alpha1-acid glycoprotein in therapeutic antifibrotic effects of imatinib with macrolides in mice. Am. J. Respir. Crit. Care Med. 176, 1243–1250 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Kucharz, E. J. et al. Acute-phase proteins in patients with systemic sclerosis. Clin. Rheumatol. 2, 165–166 (2000).

    Article  Google Scholar 

  73. Fietta, A. et al. Analysis of bronchoalveolar lavage fluid proteome from systemic sclerosis patients with or without functional, clinical and radiological signs of lung fibrosis. Arthritis Res. Ther. 8, R160 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Druker, B. J. et al.; IRIS Investigators. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Schermuly, R. T. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115, 2811–2821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perros, F. et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 178, 81–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Patterson, K. C. et al. Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann. Intern. Med. 145, 152–153 (2006).

    Article  PubMed  Google Scholar 

  78. Ghofrani, H. A. et al. Imatinib for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 353, 1412–1413 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. ClinicalTrials.gov [http://clinicaltrials.gov/ct2/show/NCT00764309] (accessed 27 January 2009).

  80. Rosenbloom, J. & Jiménez, S. A. Molecular ablation of transforming growth factor beta signaling pathways by tyrosine kinase inhibition: the coming of a promising new era in the treatment of tissue fibrosis. Arthritis Rheum. 58, 2219–2224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ghosh, A. K. et al. Trichostatin A blocks TGF-beta-induced collagen gene expression in skin fibroblasts: involvement of Sp1. Biochem. Biophys. Res. Commun. 354, 420–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Y. et al. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 54, 2271–2279 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Huber, L. C. et al. Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum. 56, 2755–2764 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Pennison, M. & Pasche, B. Targeting transforming growth factor-beta signaling. Curr. Opin. Oncol. 19, 579–585 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ruzek, M. C. et al. Minimal effects on immune parameters following chronic anti-TGF-beta monoclonal antibody administration to normal mice. Immunopharmacol. Immunotoxicol. 25, 235–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Yang, Y. A. et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cohn, R. D. et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13, 204–210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. De Angelis, R. et al. Diffuse scleroderma occurring after the use of paclitaxel for ovarian cancer. Clin. Rheumatol. 22, 49–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Kupfer, I. et al. Scleroderma-like cutaneous lesions induced by paclitaxel: a case study. J. Am. Acad. Dermatol. 48, 279–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Ghosh, A. K. et al. Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma. Arthritis Rheum. 50, 1305–1318 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Sime, P. J. The antifibrogenic potential of PPARgamma ligands in pulmonary fibrosis. J. Investig. Med. 56, 534–538 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Milam, J. E. et al. PPAR-gamma agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L891–L901 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Genovese, T. et al. Effect of rosiglitazone and 15-deoxy-Delta12, 14-prostaglandin J2 on bleomycin-induced lung injury. Eur. Respir. J. 25, 225–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Wu, M. et al. Rosiglitazone modulates fibrotic responses in mice via peroxisome proliferators activated receptor gamma: implications for systemic sclerosis. Am. J. Pathol. (in press).

  96. Shi-wen, X. et al. Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts. Arthritis Rheum. 56, 4189–4194 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Silver, R. M. Endothelin and scleroderma lung disease. Rheumatology (Oxford) 47 (Suppl. 5), v25–v26 (2008).

    Article  CAS  Google Scholar 

  98. Yamada, H. et al. Tranilast inhibits collagen synthesis in normal, scleroderma and keloid fibroblasts at a late passage culture but not at an early passage culture. J. Dermatol. Sci. 9, 45–47 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Platten, M. et al. N-[3, 4-dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor-beta release and reduces migration and invasiveness of human malignant glioma cells. Int. J. Cancer 93, 53–61 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Varga.

Ethics declarations

Competing interests

Both authors have received grants/research support from the NIH. J Varga has also received a grant/research support from Novartis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, J., Pasche, B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5, 200–206 (2009). https://doi.org/10.1038/nrrheum.2009.26

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing