Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New tools for classification and monitoring of autoimmune diseases

A Correction to this article was published on 01 October 2012

This article has been updated

Abstract

Rheumatologists see patients with a range of autoimmune diseases. Phenotyping these diseases for diagnosis, prognosis and selection of therapies is an ever increasing problem. Advances in multiplexed assay technology at the gene, protein, and cellular level have enabled the identification of 'actionable biomarkers'; that is, biological metrics that can inform clinical practice. Not only will such biomarkers yield insight into the development, remission, and exacerbation of a disease, they will undoubtedly improve diagnostic sensitivity and accuracy of classification, and ultimately guide treatment. This Review provides an introduction to these powerful technologies that could promote the identification of actionable biomarkers, including mass cytometry, protein arrays, and immunoglobulin and T-cell receptor high-throughput sequencing. In our opinion, these technologies should become part of routine clinical practice for the management of autoimmune diseases. The use of analytical tools to deconvolve the data obtained from use of these technologies is also presented here. These analyses are revealing a more comprehensive and interconnected view of the immune system than ever before and should have an important role in directing future treatment approaches for autoimmune diseases.

Key Points

  • Antigen arrays are valuable for profiling autoantibodies in diverse rheumatic autoimmune diseases and can be composed of most biomolecules including proteins, peptides, protein complexes, sugars, nucleic acids and lipids

  • High-throughput DNA sequencing enables the tracking of disease-associated clones of T cells and B cells in autoimmune diseases; changes in populations of these cells can be correlated with therapeutic response

  • The analysis of peripheral blood cells following cellular activation might be important in identifying clinically actionable biomarkers

  • New technologies enable analysis of gene and protein expression in whole blood samples; deconvolution of datasets reveals which immune-cell subset underlies a change without isolating or manipulating the cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Application of new immune-monitoring technologies to rheumatology.
Figure 2: Alternative analysis approaches for high-complexity flow cytometry data.
Figure 3: Example of a SPADE representation of CyTOF data from analysis of peripheral blood mononuclear cells from two healthy individuals.
Figure 4: The use of high-throughput DNA sequencing of immunoglobulin or T-cell receptor gene rearrangements to detect dynamic changes in lymphocyte repertoire and clonal expansions.
Figure 5: Statistical deconvolution enables detection of system-wide cell-type specific differences between groups without cell-type isolation.

Similar content being viewed by others

Change history

  • 01 October 2012

    In the versions of this article initially published in print and online, the authors did not include acknowledgements of grant support as required by their funding policies. This omission has been corrected for the HTML and PDF versions of the article.

References

  1. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Nahta, R. & Esteva, F. J. HER-2-targeted therapy: lessons learned and future directions. Clin. Cancer Res. 9, 5078–5084 (2003).

    CAS  PubMed  Google Scholar 

  3. LaGasse, J. M. et al. Successful prospective prediction of type 1 diabetes in schoolchildren through multiple defined autoantibodies: an 8-year follow-up of the Washington State Diabetes Prediction Study. Diabetes Care 25, 505–511 (2002).

    Article  PubMed  Google Scholar 

  4. van der Woude, D. et al. The ACPA isotype profile reflects long-term radiographic progression in rheumatoid arthritis. Ann. Rheum. Dis. 69, 1110–1116 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Zethelius, B. et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N. Engl. J. Med. 358, 2107–2116 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Maclaren, N. et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2β predict immune-mediated (Type 1) diabetes in relatives. J. Autoimmun. 12, 279–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Goekoop-Ruiterman, Y. P. et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): a randomized, controlled trial. Arthritis Rheum. 52, 3381–3390 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Moreland, L. W. et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 337, 141–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Q. Z. et al. Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes. Clin. Exp. Immunol. 147, 60–70 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sokolove, J. et al. Autoantibody Epitope Spreading in the Pre-Clinical Phase Predicts Progression to Rheumatoid Arthritis. PLoS One (in press).

  11. Hueber, W. et al. Blood autoantibody and cytokine profiles predict response to anti-tumor necrosis factor therapy in rheumatoid arthritis. Arthritis Res. Ther. 11, R76 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Irish, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Ornatsky, O. et al. Highly multiparametric analysis by mass cytometry. J. Immunol. Methods 361, 1–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Edwards, B. S., Oprea, T., Prossnitz, E. R. & Sklar, L. A. Flow cytometry for high-throughput, high-content screening. Curr. Opin. Chem. Biol. 8, 392–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Pyne, S. et al. Automated high-dimensional flow cytometric data analysis. Proc. Natl Acad. Sci. USA 106, 8519–8524 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Walther, G. et al. Automatic clustering of flow cytometry data with density-based merging. Adv. Bioinformatics 686759 (2009).

  20. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stanford University Gary P. Nolan Laboratory. CytoSPADE: cytoscape-driven spanning tree progression of density-normalised events [online], (2011).

  22. Robinson, W. H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Bussow, K. et al. A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucleic Acids Res. 26, 5007–5008 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ekins, R. P. Multi-analyte immunoassay. J. Pharm. Biomed. Anal. 7, 155–168 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Joos, T. O. et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21, 2641–2650 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kanter, J. L. et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12, 138–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, D., Liu, S., Trummer, B. J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Quintana, F. J. et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc. Natl Acad. Sci. USA 105, 18889–18894 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Michaud, G. A. et al. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol. 21, 1509–1512 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Tabakman, S. M. et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2, 466 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Z. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26, 1285–1292 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Gaster, R. S. et al. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 6, 314–320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Garren, H. et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann. Neurol. 63, 611–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Robinson, W. H. et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol. 21, 1033–1039 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. von Muhlen, C. A. & Tan, E. M. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin. Arthritis Rheum. 24, 323–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Campbell, P. J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl Acad. Sci. USA 105, 13081–13086 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, F., Whitton, J. L. & Slifka, M. K. The rapidity with which virus-specific CD8+ T cells initiate IFN-gamma synthesis increases markedly over the course of infection and correlates with immunodominance. J. Immunol. 173, 456–462 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Meffre, E. et al. Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. J. Clin. Invest. 108, 879–886 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weinstein, J. A., Jiang, N., White, R. A. 3rd, Fisher, D. S. & Quake, S. R. High-throughput sequencing of the zebrafish antibody repertoire. Science 324, 807–810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crow, M. K., Kirou, K. A. & Wohlgemuth, J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 36, 481–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rifkin, I. R., Leadbetter, E. A., Busconi, L., Viglianti, G. & Marshak-Rothstein, A. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol. Rev. 204, 27–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Bauer, J. W. et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 3, e491 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bauer, J. W. et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 60, 3098–3107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hueber, W. et al. Proteomic analysis of secreted proteins in early rheumatoid arthritis: anti-citrulline autoreactivity is associated with up regulation of proinflammatory cytokines. Ann. Rheum. Dis. 66, 712–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Axtell, R. C. et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Green, N. M. & Marshak-Rothstein, A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin. Immunol. 23, 106–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharp, V. & Utz, P. J. Technology insight: can autoantibody profiling improve clinical practice? Nat. Clin. Pract. Rheumatol. 3, 96–103 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Holst, J. et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat. Immunol. 9, 658–666 (2008)

    Article  PubMed  Google Scholar 

  55. Richez, C. et al. IFN regulatory factor 5 is required for disease development in the FcγRIIB−/−Yaa and FcγRIIB−/− mouse models of systemic lupus erythematosus. J. Immunol. 184, 796–806 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Thibault, D. L. et al. IRF9 and STAT1 are required for IgG autoantibody production and B cell expression of TLR7 in mice. J. Clin. Invest. 118, 1417–1426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thibault, D. L. et al. Type I interferon receptor controls B-cell expression of nucleic acid-sensing Toll-like receptors and autoantibody production in a murine model of lupus. Arthritis Res. Ther. 11, R112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kattah, M. G., Coller, J., Cheung, R. K., Oshidary, N. & Utz, P. J. HIT: a versatile proteomics platform for multianalyte phenotyping of cytokines, intracellular proteins and surface molecules. Nat. Med. 14, 1284–1289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Price, J. “On silico” peptide microarrays for high resolution mapping of antibody epitopes and diverse protein-protein interactions. Nat. Med. (in press).

  60. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boyd, S. D. et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci. Transl. Med. 1, 12ra23 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Freeman, J. D., Warren, R. L., Webb, J. R., Nelson, B. H. & Holt, R. A. Profiling the T-cell receptor β-chain repertoire by massively parallel sequencing. Genome Res. 19, 1817–1824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Glanville, J. et al. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc. Natl Acad. Sci. USA 106, 20216–20221 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Robins, H. S. et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Venturi, V. et al. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J. Immunol. 186, 4285–4294 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, C. et al. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc. Natl Acad. Sci. USA 107, 1518–1523 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wu, Y. C. et al. High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116, 1070–1078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liao, H. X. et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J. Exp. Med. 208, 2237–2249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, X. et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robins, H. et al. Ultra-sensitive detection of rare T cell clones. J. Immunol. Methods 375, 14–19 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Warren, R. L. et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 21, 790–797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lebecque, S. G. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. Boyd, S. D. et al. Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J. Immunol. 184, 6986–6992 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, Y. et al. Genomic screening by 454 pyrosequencing identifies a new human IGHV gene and sixteen other new IGHV allelic variants. Immunogenetics 63, 259–265 (2011).

    Article  PubMed  Google Scholar 

  76. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Yurasov, S. et al. Persistent expression of autoantibodies in SLE patients in remission. J. Exp. Med. 203, 2255–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yurasov, S. et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Edwards, B. M. et al. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J. Mol. Biol. 334, 103–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Glanville, J. et al. Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc. Natl Acad. Sci. USA 108, 20066–20071 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jackson, K. J. et al. Divergent human populations show extensive shared IGK rearrangements in peripheral blood B cells. Immunogenetics 64, 3–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Massengill, S. F., Goodenow, M. M. & Sleasman, J. W. SLE nephritis is associated with an oligoclonal expansion of intrarenal T cells. Am. J. Kidney Dis. 31, 418–426 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Murata, H. et al. T cell receptor repertoire of T cells in the kidneys of patients with lupus nephritis. Arthritis Rheum. 46, 2141–2147 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Winchester, R. et al. Immunologic characteristics of intrarenal T cells: Trafficking of expanded CD8 T cell β-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. http://dx.doi.org/10.1002/art.33488.

  85. Gillespie, G. M. et al. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J. Virol. 74, 8140–8150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hadrup, S. R. et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J. Immunol. 176, 2645–2653 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Janeway, C. et al. Immunobiology: The Immune System in Health and Disease (5th edition) (Garland Science, New York, 2001).

    Google Scholar 

  88. Cobb, J. P. et al. Application of genome-wide expression analysis to human health and disease. Proc. Natl Acad. Sci. USA 102, 4801–4806 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Whitney, A. R. et al. Individuality and variation in gene expression patterns in human blood. Proc. Natl Acad. Sci. USA 100, 1896–1901 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, Q. et al. Investigation of variation in gene expression profiling of human blood by extended principle component analysis. PLoS ONE 6, e26905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Palmer, C., Diehn, M., Alizadeh, A. A. & Brown, P. O. Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics 7, 115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Clarke, J., Seo, P. & Clarke, B. Statistical expression deconvolution from mixed tissue samples. Bioinformatics 26, 1043–1049 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kuroda, M. J. et al. Human immunodeficiency virus type 1 envelope epitope-specific CD4(+) T lymphocytes in simian/human immunodeficiency virus-infected and vaccinated rhesus monkeys detected using a peptide-major histocompatibility complex class II tetramer. J. Virol. 74, 8751–8756 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shen-Orr, S. S. et al. Cell type-specific gene expression differences in complex tissues. Nat. Methods 7, 287–289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Lochem, E. G. et al. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B. Clin. Cytom. 60, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Hongwu Du for his advice on the systems immunology section of the article and for assistance with editing the manuscript. In addition, the authors thank members of the Boyd lab and Dr A. Fire (Stanford University, Stanford, USA) in collaboration with Dr A. Lucas and Dr L. Liu (Children's Hospital Oakland Research Institute, Oakland, USA) for providing the basis for Figure 4. Furthermore, the authors gratefully acknowledge sources of funding for their research activities: H. T. Maecker's work was supported by NIH grants 3 U19 AI057229, 4 U19 AI090019, and 1 RC4 AG039014; P. J. Utz was the recipient of a Donald E. and Delia B. Baxter Foundation Career Development Award and his work is supported by National Heart, Lung, and Blood Institute (NHLBI) Proteomics contract HHSN288201000034C, Proteomics of Inflammatory Immunity and Pulmonary Arterial Hypertension, NIH grants 5 U19-AI082719, 5 U19-AI050864, 5 U19-AI056363, 1 U19 AI090019 and 4 U19 AI090019, Canadian Institutes of Health Research grant 2 OR-92141, Alliance for Lupus Research grant number 21858, a gift from the Ben May Trust and a gift from the Floren Family Trust, and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 261382; S. D. Boyd is the recipient of NIH grants U19AI090019, U19AI067854, U54-AI065359, UM1AI100663-01, Ellison Medical Foundation grant AG-NS-792-11, and the Lucille Packard Pediatric Research Fund; the work of S. S. Shen-Orr is supported by NIH grant 3 U19 AI057229.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, substantially contributed to the discussion of content and selection of references and reviewed/edited the manuscript before submission. H. T. Maecker, T. M. Lindstrom, W. H. Robinson, P. J. Utz, M. Hale, S. D. Boyd and S. S. Shen-Orr wrote the article.

Corresponding author

Correspondence to C. Garrison Fathman.

Ethics declarations

Competing interests

S. D. Boyd is a consultant for ImmuMetrix LLC, and has received consultancy fees and equity compensation. The remaining authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maecker, H., Lindstrom, T., Robinson, W. et al. New tools for classification and monitoring of autoimmune diseases. Nat Rev Rheumatol 8, 317–328 (2012). https://doi.org/10.1038/nrrheum.2012.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.66

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing