Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging techniques for prostate cancer: implications for focal therapy

Abstract

The multifocal nature of prostate cancer has necessitated whole-gland therapy in the past; however, since the widespread use of PSA screening, patients frequently present with less-advanced disease. Many men with localized disease wish to avoid the adverse effects of whole-gland therapy; therefore, focal therapy for prostate cancer is being considered as a treatment option. For focal treatment to be viable, accurate imaging is required for diagnosis, staging, and monitoring of treatment. Developments in MRI and PET have brought more attention to prostate imaging and the possibility of improving the accuracy of focal therapy. In this Review, we discuss the advantages and disadvantages of conventional methods for imaging the prostate, new developments for targeted imaging, and the possible role of image-guided biopsy and therapy for localized prostate cancer.

Key Points

  • Since the widespread use of PSA screening, many patients present with localized prostate cancer, and focal therapy is now being considered for these patients

  • Imaging currently has a major role in the staging of prostate cancer, but could also be used to direct focal therapy

  • MRI is currently the most accurate imaging method for lesion detection and local staging

  • Although experience is limited, PET with novel tracers may enable better lesion delineation and nodal staging than MRI

  • Real-time transrectal ultrasonography and MRI fusion guidance can be performed at a lower cost and faster than real-time MRI-guided prostatic interventional procedures (biopsy and focal therapy)

  • Integration of sophisticated imaging techniques into prostate interventions will allow accurate sampling and minimally invasive, targeted treatments for localized prostate cancer

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRI of an 82-year-old man with prostate cancer and extracapsular extension.
Figure 2: MRI of a 53-year-old man with prostate cancer.
Figure 3: Work flow of MRI–TRUS fusion-guided prostate biopsy.
Figure 4: MRI of a 69-year-old man without previous documentation of prostate cancer.

Similar content being viewed by others

References

  1. American Cancer Society (online 2008) Cancer Facts & Figures 2008 http://www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf (2009).

  2. Hricak, H., Choyke, P. L., Eberhardt, S. C., Leibel, S. A. & Scardino, P. T. Imaging prostate cancer: a multidisciplinary perspective. Radiology 243, 2028–2053 (2007).

    Article  Google Scholar 

  3. Cornud, F. et al. Endorectal color Doppler sonography and endorectal MR imaging features of nonpalpable prostate cancer: correlation with radical prostatectomy findings. AJR Am. J. Roentgenol. 175, 1161–1168 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, J. C. et al. Contrast-enhanced gray-scale transrectal ultrasound-guided prostate biopsy in men with elevated serum prostate-specific antigen levels. Acad. Radiol. 15, 1291–1297 (2008).

    Article  PubMed  Google Scholar 

  5. Tang, J., Yang, J. C., Li, Y., Li, J. & Shi, H. Peripheral zone hypoechoic lesions of the prostate: evaluation with contrast-enhanced gray scale transrectal ultrasonography. J. Ultrasound Med. 26, 1671–1679 (2007).

    Article  PubMed  Google Scholar 

  6. Halpern, E. J. et al. Detection of prostate carcinoma with contrast-enhanced sonography using intermittent harmonic imaging. Cancer 104, 2373–2383 (2005).

    Article  PubMed  Google Scholar 

  7. Taymoorian, K. et al. Transrectal broadband-Doppler sonography with intravenous contrast medium administration for prostate imaging and biopsy in men with an elevated PSA value and previous negative biopsies. Anticancer Res. 27, 4315–4320 (2007).

    PubMed  Google Scholar 

  8. Ocak, I. et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am. J. Roentgenol. 189, 849 (2007).

    Article  PubMed  Google Scholar 

  9. Akin, O. et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239, 784–792 (2006).

    Article  PubMed  Google Scholar 

  10. Claus, F. G., Hricak, H. & Hattery, R. R. Pretreatment evaluation of prostate cancer: role of MR imaging and 1H MR spectroscopy. Radiographics 24 (Suppl. 1), S167–S180 (2004).

    Article  PubMed  Google Scholar 

  11. Scheidler, J. et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology 213, 473–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Ekici, S. et al. A comparison of transrectal ultrasonography and endorectal magnetic resonance imaging in the local staging of prostatic carcinoma. BJU Int. 83, 796–800 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Wefer, A. E. et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J. Urol. 164, 400–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Ikonen, S. et al. Prostatic MR imaging. Accuracy in differentiating cancer from other prostatic disorders. Acta Radiol. 42, 348–354 (2001).

    CAS  PubMed  Google Scholar 

  15. Akin, O. et al. Local staging of prostate cancer with endorectal surface coil MR imaging in a mid-field magnetic system. Clin. Imaging 27, 47–51 (2003).

    Article  PubMed  Google Scholar 

  16. Kwek, J. W. et al. Phased-array magnetic resonance imaging of the prostate with correlation to radical prostatectomy specimens: local experience. Asian J. Surg. 27, 219–224 (2004).

    Article  PubMed  Google Scholar 

  17. Nakashima, J. et al. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology 64, 101–105 (2004).

    Article  PubMed  Google Scholar 

  18. Yamaguchi, T. et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur. J. Nucl. Med. Mol. Imaging 32, 742–748 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Cirillo, S. et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur. Radiol. 19, 761–769 (2008).

    Article  PubMed  Google Scholar 

  20. Sala, E. et al. Endorectal MR imaging before salvage prostatectomy: tumor localization and staging. Radiology 238, 176–183 (2006).

    Article  PubMed  Google Scholar 

  21. Tan, J. S. et al. Local experience of endorectal magnetic resonance imaging of prostate with correlation to radical prostatectomy specimens. Ann. Acad. Med. Singapore 37, 40–43 (2008).

    PubMed  Google Scholar 

  22. Fütterer, J. J. et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology 237, 541–549 (2005).

    Article  PubMed  Google Scholar 

  23. Bloch, B. N. et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging—initial results. Radiology 245, 176–185 (2007).

    Article  PubMed  Google Scholar 

  24. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  PubMed  Google Scholar 

  25. Harisinghani, M. G. et al. Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization? AJR Am. J. Roentgenol. 186, 144–148 (2006).

    Article  PubMed  Google Scholar 

  26. Qayyum, A. et al. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. AJR Am. J. Roentgenol. 183, 1079–1083 (2004).

    Article  PubMed  Google Scholar 

  27. Noworolski, S. M., Vigneron, D. B., Chen, A. P. & Kurhanewicz, J. Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn. Reson. Imaging 26, 1071–1080 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Concato, J. et al. Molecular markers and mortality in prostate cancer. BJU Int. 100, 1259–1263 (2007).

    Article  PubMed  Google Scholar 

  29. Lemaitre, L. et al. Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur. Radiol. 19, 470–480 (2009).

    Article  PubMed  Google Scholar 

  30. Li, C. S. et al. Enhancement characteristics of ultrasmall superparamagnetic iron oxide particle within the prostate gland in patients with primary prostate cancer. J. Comput. Assist. Tomogr. 32, 523–528 (2008).

    Article  PubMed  Google Scholar 

  31. Tamada, T. et al. Prostate cancer: relationships between postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology 248, 531–539 (2008).

    Article  PubMed  Google Scholar 

  32. Kim, J. K. et al. Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J. Magn. Reson. Imaging 22, 639–646 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Villers, A. et al. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J. Urol. 176, 2432–2437 (2006).

    Article  PubMed  Google Scholar 

  34. Cheikh, A. B. et al. Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy. Eur. Radiol. 19, 770–778 (2008).

    Article  PubMed  Google Scholar 

  35. Ogura, K. et al. Dynamic endorectal magnetic resonance imaging for local staging and detection of neurovascular bundle involvement of prostate cancer: correlation with histopathologic results. Urology 57, 721–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Costello, L. C., Franklin, R. B. & Feng, P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 5, 143–153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramírez de Molina, A. et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem. Biophys. Res. Commun. 296, 580–583 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Kurhanewicz, J. et al. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-07-cm3) spatial resolution. Radiology 198, 795–805 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Fütterer, J. J. et al. Initial experience of 3 Tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest. Radiol. 39, 671–680 (2004).

    Article  PubMed  Google Scholar 

  40. Shukla-Dave, A. et al. Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines. Radiology 245, 499–506 (2007).

    Article  PubMed  Google Scholar 

  41. Wetter, A. et al. Combined MRI and MR spectroscopy of the prostate before radical prostatectomy. AJR Am. J. Roentgenol. 187, 724–730 (2006).

    Article  PubMed  Google Scholar 

  42. Casciani, E. et al. Contribution of the MR spectroscopic imaging in the diagnosis of prostate cancer in the peripheral zone. Abdom. Imaging 32, 796–802 (2007).

    Article  PubMed  Google Scholar 

  43. Weis, J. et al. Two-dimensional spectroscopic imaging for pretreatment evaluation of prostate cancer: comparison with the step-section histology after radical prostatectomy. Magn. Reson. Imaging 27, 87–93 (2009).

    Article  PubMed  Google Scholar 

  44. Coakley, F. V. et al. Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology 223, 91–97 (2002).

    Article  PubMed  Google Scholar 

  45. Yu, K. K. et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology 213, 481–488 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Joseph, T. et al. Pretreatment endorectal magnetic resonance imaging and magnetic resonance spectroscopic imaging features of prostate cancer as predictors of response to external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 73, 665–671 (2009).

    Article  PubMed  Google Scholar 

  47. Gibbs, P., Pickles, M. D. & Turnbull, L. W. Diffusion imaging of the prostate at 3.0 Tesla. Invest. Radiol. 41, 185–188 (2006).

    Article  PubMed  Google Scholar 

  48. Van As, N. et al. Correlation of diffusion-weighted MRI with whole mount radical prostatectomy specimens. Br. J. Radiol. 81, 456–462 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Tamada, T. et al. Age-related and zonal anatomical changes of apparent diffusion coefficient values in normal human prostatic tissues. J. Magn. Reson. Imaging 27, 552–556 (2008).

    Article  PubMed  Google Scholar 

  50. Kim, C. K., Park, B. K., Lee, H. M. & Kwon, G. Y. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3 T using a phased-array coil: preliminary results. Invest. Radiol. 42, 842–847 (2007).

    Article  PubMed  Google Scholar 

  51. Kitajima, K., Kaji, Y., Kuroda, K. & Sugimura, K. High b-value diffusion-weighted imaging in normal and malignant peripheral zone tissue of the prostate: effect of signal-to-noise ratio. Magn. Reson. Med. Sci. 7, 93–99 (2008).

    Article  PubMed  Google Scholar 

  52. Miao, H., Fukatsu, H. & Ishigaki, T. Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur. J. Radiol. 61, 297–302 (2007).

    Article  PubMed  Google Scholar 

  53. Haider, M. A. et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am. J. Roentgenol. 189, 323–328 (2007).

    Article  PubMed  Google Scholar 

  54. Kozlowski, P. et al. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—correlation with biopsy and histopathology. J. Magn. Reson. Imaging 24, 108–113 (2006).

    Article  PubMed  Google Scholar 

  55. Reinsberg, S. A. et al. Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am. J. Roentgenol. 188, 91–98 (2007).

    Article  PubMed  Google Scholar 

  56. Mazaheri, Y. et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 246, 480–488 (2008).

    Article  PubMed  Google Scholar 

  57. Wynant, G. E. et al. Immunoscintigraphy of prostatic cancer: preliminary results with 111In-labeled monoclonal antibody 117E11-C5.3 (CYT-356). Prostate 18, 229–241 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Babaian, R. J. et al. Radioimmunoscintigraphy of pelvic lymph nodes with 111indium-labeled monoclonal antibody CYT-356. J. Urol. 152, 1952–1955 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Hinkle, G. H. et al. Prostate cancer abdominal metastases detected with indium-111-capromab pendetide. J. Nucl. Med. 39, 650–652 (1998).

    CAS  PubMed  Google Scholar 

  60. Levesque, P. E., Nieh, P. T., Zinman, L. N., Seldin, D. W. & Libertino, J. A. Radiolabeled monoclonal antibody indium-111-labeled CYT-356 localizes extraprostatic recurrent carcinoma after prostatectomy. Urology 51, 978–984 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Deb, N. et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin. Cancer Res. 2, 1289–1297 (1996).

    CAS  PubMed  Google Scholar 

  62. Schettino, C. J. et al. Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer. AJR Am. J. Roentgenol. 183, 519–524 (2004).

    Article  PubMed  Google Scholar 

  63. Liu, I. J., Zafar, M. B., Lai, Y. H., Segall, G. M. & Terris, M. K. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57, 108–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Hofer, C. et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur. Urol. 36, 31–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Shreve, P. D., Grossman, H. B., Gross, M. D. & Wahl, R. L. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199, 751–756 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Yoshimoto, M. et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl. Med. Biol. 28, 117–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Oyama, N. et al. 11C-acetate PET imaging of prostate cancer. J. Nucl. Med. 43, 181–186 (2002).

    CAS  PubMed  Google Scholar 

  68. Kotzerke, J. et al. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 29, 1380–1384 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Fricke, E. et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 30, 607–611 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Wachter, S. et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J. Clin. Oncol. 24, 2513–2519 (2006).

    Article  PubMed  Google Scholar 

  71. Farsad, M. et al. Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J. Nucl. Med. 46, 1642–1649 (2005).

    CAS  PubMed  Google Scholar 

  72. Schiavina, R. et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur. Urol. 54, 392–401 (2008).

    Article  PubMed  Google Scholar 

  73. Scher, B. et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 34, 45–53 (2007).

    Article  PubMed  Google Scholar 

  74. Kwee, S. A. et al. Use of step-section histopathology to evaluate 18F-fluorocholine PET sextant localization of prostate cancer. Mol. Imaging 7, 12–20 (2008).

    Article  PubMed  Google Scholar 

  75. Cimitan, M. et al. 18F-fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur. J. Nucl. Med. Mol. Imaging 33, 1387–1398 (2006).

    Article  PubMed  Google Scholar 

  76. Schuster, D. M. et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J. Nucl. Med. 48, 56–63 (2007).

    CAS  PubMed  Google Scholar 

  77. Larson, S. M. et al. Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J. Nucl. Med. 45, 366–373 (2004).

    CAS  PubMed  Google Scholar 

  78. Dehdashti, F. et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur. J. Nucl. Med. Mol. Imaging 32, 344–350 (2005).

    Article  PubMed  Google Scholar 

  79. Rabbani, F., Stroumbakis, N., Kava, B. R., Cookson, M. S. & Fair, W. R. Incidence and clinical significance of false-negative sextant prostate biopsies. J. Urol. 159, 1247–1250 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Obek, C., Louis, P., Civantos, F. & Soloway, M. S. Comparison of digital rectal examination and biopsy results with the radical prostatectomy specimen. J. Urol. 161, 494–498 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Atalar, E. & Ménard, C. MR-guided interventions for prostate cancer. Magn. Reson. Imaging Clin. N. Am. 13, 491–504 (2005).

    Article  PubMed  Google Scholar 

  82. D'Amico, A. V. et al. Transperineal magnetic resonance image guided prostate biopsy. J. Urol. 164, 385–387 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Susil, R. C. et al. System for MR image-guided prostate interventions: canine study. Radiology 228, 886–894 (2003).

    Article  PubMed  Google Scholar 

  84. Krieger, A. et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans. Biomed. Eng. 52, 306–313 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Beyersdorff, D. et al. MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology 234, 576–581 (2005).

    Article  PubMed  Google Scholar 

  86. Susil, R. C. et al. Transrectal prostate biopsy and fiducial marker placement in a standard 1.5 T magnetic resonance imaging scanner. J. Urol. 175, 113–120 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen, J. C. et al. Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology 214, 290–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Kaplan, I. et al. Real time MRI–ultrasound image guided stereotactic prostate biopsy. Magn. Reson. Imaging 20, 295–299 (2002).

    Article  PubMed  Google Scholar 

  89. Schlaier, J. R. et al. Image fusion of MR images and real-time ultrasonography: evaluation of fusion accuracy combining two commercial instruments, a neuronavigation system and a ultrasound system. Acta Neurochir. (Wien) 146, 271–276 (2004).

    Article  CAS  Google Scholar 

  90. Krücker, J. et al. Clinical evaluation of electromagnetic tracking for biopsy and radiofrequency ablation guidance. Int. J. CARS 1, 169–171 (2006).

    Article  Google Scholar 

  91. Singh, A. K. et al. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int. 101, 841–845 (2008).

    Article  PubMed  Google Scholar 

  92. Xu, S. et al. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput. Aided Surg. 13, 255–264 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Grubb, R. L. 3rd, Vardi, I. Y., Bhayani, S. B. & Kibel, A. S. Minimally invasive approaches to localized prostate carcinoma. Hematol. Oncol. Clin. North Am. 20, 879–895 (2006).

    Article  PubMed  Google Scholar 

  94. Shariat, S. F., Raptidis, G., Masatoschi, M., Bergamaschi, F. & Slawin, K. M. Pilot study of radiofrequency interstitial tumor ablation (RITA) for the treatment of radio-recurrent prostate cancer. Prostate 65, 260–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Moore, C. M. et al. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers Surg. Med. 38, 356–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. De Meerleer, G. et al. The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother. Oncol. 75, 325–333 (2005).

    Article  PubMed  Google Scholar 

  97. Boda-Heggemann, J. et al. Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 70, 1247–1255 (2008).

    Article  PubMed  Google Scholar 

  98. Kupelian, P. A., Willoughby, T. R., Reddy, C. A., Klein, E. A. & Mahadevan, A. Impact of image guidance on outcomes after external beam radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 1146–1150 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Choyke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkbey, B., Pinto, P. & Choyke, P. Imaging techniques for prostate cancer: implications for focal therapy. Nat Rev Urol 6, 191–203 (2009). https://doi.org/10.1038/nrurol.2009.27

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing