Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunologic mechanisms in RCC and allogeneic renal transplant rejection

Abstract

The tolerance state that exists between renal cell carcinoma (RCC) and the host's immune system would be an ideal situation in the setting of human kidney transplantation, in which graft tolerance is the ultimate goal of immunosuppressive therapy. On the other hand, acute rejection, as it appears in renal allografts, would be the optimal immunologic situation in patients with RCC. Analysis of the underlying mechanisms of acute allograft rejection and local pro-tumor immunosuppression could help to identify potential therapeutic targets for inducing immune tolerance in allograft recipients and immune rejection in RCC patients. Experimental kidney transplantation might be a suitable model in which to analyze these processes. Macrophages are a prominent and vital cell type in the cellular infiltrate seen in both RCC and renal allografts. Depending on their polarization, they can initiate and promote either proinflammatory or pro-tumor responses, which lead to tissue rejection or acceptance, respectively. Improved understanding of macrophage biology could lead to therapeutic modification of their function in order to promote a desirable immunologic response in either RCC or transplant tissue.

Key Points

  • Renal cell carcinoma (RCC) is an immunoresponsive tumor, for which emerging, immune-based treatments are being tested in clinical studies

  • The immunosuppressive tumor microenvironment inhibits an effective immune response by inducing functional anergy of local macrophages and T cells

  • Acute renal allograft rejection is a useful model in which to study the inflammatory and immune mechanisms required to induce tumor rejection

  • Macrophages show a functional plasticity, displaying either an M1 (proinflammatory) or M2 (immunosuppressive and pro-tumor) phenotype

  • Potential therapeutic strategies that target macrophages include the induction of macrophage depletion or reprogramming, and interference with macrophage-mediated co-stimulation of T cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both clear cell renal cell carcinoma (RCC) and human renal allograft show a strong mononuclear cell infiltrate of lymphocytes and monocytes/macrophages.
Figure 2: Schematic representation of the plasticity of macrophages.
Figure 3: Tissue-specific recruitment of monocytes.
Figure 4: Co-stimulatory signals provided by macrophages to naive T cells.

Similar content being viewed by others

References

  1. Ljungberg, B. et al. Renal cell carcinoma guideline. Eur. Urol. 51, 1502–1510 (2007).

    Article  PubMed  Google Scholar 

  2. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. McDermott, D. F. The application of high-dose interleukin-2 for metastatic renal cell carcinoma. Med. Oncol. 26 (Suppl. 1), 13–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. The high-dose aldesleukin (IL-2) “Select” trial for patients with metastatic renal cell carcinoma (SELECT) [online].

  5. Van Poppel, H., Joniau, S. & Van Gool, S. W. Vaccine therapy in patients with renal cell carcinoma. Eur. Urol. 55, 1333–1342 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Rammensee, H. G. Immunology: protein surgery. Nature 427, 203–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Dengjel, J. et al. Unexpected abundance of HLA class II presented peptides in primary renal cell carcinomas. Clin. Cancer Res. 12, 4163–4170 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Rammensee, H. G., Weinschenk, T., Gouttefangeas, C. & Stevanovic, S. Towards patient-specific tumor antigen selection for vaccination. Immunol. Rev. 188, 164–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Brossart, P. et al. Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res. 58, 732–736 (1998).

    CAS  PubMed  Google Scholar 

  11. Gouttefangeas, C., Stenzl, A., Stevanovic, S. & Rammensee, H. G. Immunotherapy of renal cell carcinoma. Cancer Immunol. Immunother. 56, 117–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Feyerabend, S. et al. Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer. Prostate 69, 917–927 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Childs, R. et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N. Engl. J. Med. 343, 750–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Fishman, M. et al. Phase II trial of B7–1 (CD-86) transduced, cultured autologous tumor cell vaccine plus subcutaneous interleukin-2 for treatment of stage IV renal cell carcinoma. J. Immunother. 31, 72–80 (2008).

    Article  PubMed  Google Scholar 

  15. Jocham, D. et al. Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 363, 594–599 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. May, M. et al. Ten-year survival analysis for renal carcinoma patients treated with an autologous tumour lysate vaccine in an adjuvant setting. Cancer Immunol. Immunother. 59, 687–695 (2010).

    Article  PubMed  Google Scholar 

  17. Wood, C. et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372, 145–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bedke, J. et al. Anti-inflammatory effects of αv integrin antagonism in acute kidney allograft rejection. Am. J. Pathol. 171, 1127–1139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bedke, J. et al. Beneficial effects of CCR1 blockade on the progression of chronic renal allograft damage. Am. J. Transplant. 7, 527–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Schreiber, T. H. & Podack, E. R. A critical analysis of the tumour immunosurveillance controversy for 3-MCA-induced sarcomas. Br. J. Cancer 101, 381–386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burnet, M. Cancer; a biological approach. I. The processes of control. Br. Med. J. 1, 779–786 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kasiske, B. L., Snyder, J. J., Gilbertson, D. T. & Wang, C. Cancer after kidney transplantation in the United States. Am. J. Transplant. 4, 905–913 (2004).

    Article  PubMed  Google Scholar 

  23. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Fisher, M. S. & Kripke, M. L. Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc. Natl Acad. Sci. USA 74, 1688–1692 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwarz, T. 25 years of UV-induced immunosuppression mediated by T cells—from disregarded T suppressor cells to highly respected regulatory T cells. Photochem. Photobiol. 84, 10–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Kondo, T. et al. Favorable prognosis of renal cell carcinoma with increased expression of chemokines associated with a Th1-type immune response. Cancer Sci. 97, 780–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Curiel, T. J. Tregs and rethinking cancer immunotherapy. J. Clin. Invest. 117, 1167–1174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kusmartsev, S. & Vieweg, J. Enhancing the efficacy of cancer vaccines in urologic oncology: new directions. Nat. Rev. Urol. 6, 540–549 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Kusmartsev, S. et al. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 14, 8270–8278 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Curiel, T. J. Regulatory T cells and treatment of cancer. Curr. Opin. Immunol. 20, 241–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, J. F. et al. The prognostic value of peritumoral regulatory T cells and its correlation with intratumoral cyclooxygenase-2 expression in clear cell renal cell carcinoma. BJU Int. 103, 399–405 (2009).

    Article  PubMed  Google Scholar 

  35. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, W., Gu, Y. H., Song, R., Qu, B. Q. & Xu, Q. Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia 22, 1226–1233 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Lob, S., Konigsrainer, A., Rammensee, H. G., Opelz, G. & Terness, P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer 9, 445–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Lob, S. et al. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 111, 2152–2154 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Fischer, K. et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Semenza, G. L. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J. Bioenerg. Biomembr. 39, 231–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Gunther, E. & Walter, L. The major histocompatibility complex of the rat (Rattus norvegicus). Immunogenetics 53, 520–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Grone, H. J. et al. Met–RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J. 13, 1371–1383 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Hojo, M. et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 397, 530–534 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Koehl, G. E. et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation 77, 1319–1326 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Maluccio, M. et al. Tacrolimus enhances transforming growth factor-β1 expression and promotes tumor progression. Transplantation 76, 597–602 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Coffelt, S. B., Hughes, R. & Lewis, C. E. Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim. Biophys. Acta 1796, 11–18 (2009).

    CAS  PubMed  Google Scholar 

  49. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6, 24–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Siciliano, N. A., Skinner, J. A. & Yuk, M. H. Bordetella bronchiseptica modulates macrophage phenotype leading to the inhibition of CD4+ T cell proliferation and the initiation of a Th17 immune response. J. Immunol. 177, 7131–7138 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Guiducci, C., Vicari, A. P., Sangaletti, S., Trinchieri, G. & Colombo, M. P. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 65, 3437–3446 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Ricardo, S. D., van Goor, H. & Eddy, A. A. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118, 3522–3530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cua, D. J. & Stohlman, S. A. In vivo effects of T helper cell type 2 cytokines on macrophage antigen-presenting cell induction of T helper subsets. J. Immunol. 159, 5834–5840 (1997).

    CAS  PubMed  Google Scholar 

  57. Savage, N. D. et al. Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFβ-1. J. Immunol. 181, 2220–2226 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sica, A. & Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117, 1155–1166 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nelson, P. J. & Krensky, A. M. Chemokines, chemokine receptors, and allograft rejection. Immunity 14, 377–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Furuichi, K., Kaneko, S. & Wada, T. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin. Exp. Nephrol. 13, 9–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Bedke, J. et al. A novel CXCL8 protein-based antagonist in acute experimental renal allograft damage. Mol. Immunol. 47, 1047–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Stojanovic, T. et al. Met–RANTES inhibition of mucosal perfusion failure in acute intestinal transplant rejection—role of endothelial cell-leukocyte interaction. J. Vasc. Res. 39, 51–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Fischereder, M. et al. CC chemokine receptor 5 and renal-transplant survival. Lancet 357, 1758–1761 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Robinson, S. C. et al. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res. 63, 8360–8365 (2003).

    CAS  PubMed  Google Scholar 

  67. Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Kondo, T. et al. High expression of chemokine gene as a favorable prognostic factor in renal cell carcinoma. J. Urol. 171, 2171–2175 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Roca, H. et al. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J. Biol. Chem. 284, 34342–34354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jose, M. D., Ikezumi, Y., van Rooijen, N., Atkins, R. C. & Chadban, S. J. Macrophages act as effectors of tissue damage in acute renal allograft rejection. Transplantation 76, 1015–1022 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Soltau, J. et al. Antitumoral and antiangiogenic efficacy of bisphosphonates in vitro and in a murine RENCA model. Anticancer Res. 28, 933–941 (2008).

    CAS  PubMed  Google Scholar 

  72. Miwa, S. et al. A case of bone, lung, pleural and liver metastases from renal cell carcinoma which responded remarkably well to zoledronic acid monotherapy. Jpn J. Clin. Oncol. 39, 745–750 (2009).

    Article  PubMed  Google Scholar 

  73. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    CAS  PubMed  Google Scholar 

  74. Salnikov, A. V. et al. Inhibition of carcinoma cell-derived VEGF reduces inflammatory characteristics in xenograft carcinoma. Int. J. Cancer 119, 2795–2802 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Roland, C. L. et al. Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol. Cancer Ther. 8, 1761–1771 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Kreitman, R. J. Recombinant immunotoxins for the treatment of chemoresistant hematologic malignancies. Curr. Pharm. Des. 15, 2652–2664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Foss, F. Clinical experience with denileukin diftitox (ONTAK). Semin. Oncol. 33 (1 Suppl. 3), S11–S16 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Denileukin diftitox and interleukin-2 in treating patients with metastatic kidney cancer [online].

  79. Stout, R. D., Watkins, S. K. & Suttles, J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J. Leukoc. Biol. 86, 1105–1109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hill, H. C. et al. Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res. 62, 7254–7263 (2002).

    CAS  PubMed  Google Scholar 

  81. Watkins, S. K., Egilmez, N. K., Suttles, J. & Stout, R. D. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J. Immunol. 178, 1357–1362 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Brunda, M. J. et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178, 1223–1230 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Coughlin, C. M. et al. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J. Clin. Invest. 101, 1441–1452 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hwang, K. S. et al. Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice. BMC Cancer 5, 51 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schaefer, L. et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest. 115, 2223–2233 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dehmel, S. et al. Chemokine receptor CCR5 deficiency induces alternative macrophage activation and improves long-term renal allograft outcome. Eur. J. Immunol. 40, 267–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Dougan, M. & Dranoff, G. Immune therapy for cancer. Annu. Rev. Immunol. 27, 83–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Sayegh, M. H. & Turka, L. A. The role of T-cell costimulatory activation pathways in transplant rejection. N. Engl. J. Med. 338, 1813–1821 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. O'Day, S. J., Hamid, O. & Urba, W. J. Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110, 2614–2627 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Salomon, B. & Bluestone, J. A. Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Shiao, S. L. et al. Immunomodulatory properties of FK734, a humanized anti-CD28 monoclonal antibody with agonistic and antagonistic activities. Transplantation 83, 304–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Larsen, C. P. et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4–Ig with potent immunosuppressive properties. Am. J. Transplant. 5, 443–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Greenwald, R. J., Freeman, G. J. & Sharpe, A. H. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A. Stenzl was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, SFB 685 C5). The authors thank Hermann-Josef Gröne, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany, and Hans-Georg Rammensee, Department of Immunology, University of Tübingen, Germany for their careful reading of this manuscript and for their thoughtful comments. The authors additionally thank Hermann-Josef Gröne for providing the photomicrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bedke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedke, J., Stenzl, A. Immunologic mechanisms in RCC and allogeneic renal transplant rejection. Nat Rev Urol 7, 339–347 (2010). https://doi.org/10.1038/nrurol.2010.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.59

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer