Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Testicular descent: INSL3, testosterone, genes and the intrauterine milieu

Abstract

Complete testicular descent is a sign of, and a prerequisite for, normal testicular function in adult life. The process of testis descent is dependent on gubernacular growth and reorganization, which is regulated by the Leydig cell hormones insulin-like peptide 3 (INSL3) and testosterone. Investigation of the role of INSL3 and its receptor, relaxin-family peptide receptor 2 (RXFP2), has contributed substantially to our understanding of the hormonal control of testicular descent. Cryptorchidism is a common congenital malformation, which is seen in 2–9% of newborn boys, and confers an increased risk of infertility and testicular cancer in adulthood. Although some cases of isolated cryptorchidism in humans can be ascribed to known genetic defects, such as mutations in INSL3 or RXFP2, the cause of cryptorchidism remains unknown in most patients. Several animal and human studies are currently underway to test the hypothesis that in utero factors, including environmental and maternal lifestyle factors, may be involved in the etiology of cryptorchidism. Overall, the etiology of isolated cryptorchidism seems to be complex and multifactorial, involving both genetic and nongenetic components.

Key Points

  • The process of testicular descent occurs during fetal development and should be completed before birth in humans

  • Undescended testes, or cryptorchidism, confers an increased risk of testicular cancer and infertility in adult life

  • Testosterone and insulin-like peptide 3 produced by the Leydig cells both have a pivotal role in testicular descent

  • Testicular descent relies primarily on hormone-dependent development and reorganization of the ligament gubernaculum

  • The intrauterine environment is often involved in the pathogenesis of isolated cryptorchidism, whereas known genetic factors are responsible for only a small proportion of cases

  • The etiology of cryptorchidism is incompletely understood, and is regarded as both complex and multifactorial

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: INSL3 levels in human males through fetal life to adulthood.
Figure 2: Schematic illustration of the stages of cryptorchidism, according to the system proposed by Scorer.64
Figure 3: Histological images of testicular biopsies.

Similar content being viewed by others

References

  1. Lee, P. A. & Coughlin, M. T. Fertility after bilateral cryptorchidism. Evaluation by paternity, hormone, and semen data. Horm. Res. 55, 28–32 (2001).

    CAS  PubMed  Google Scholar 

  2. Cortes, D., Thorup, J. M. & Visfeldt, J. Cryptorchidism: aspects of fertility and neoplasms. A study including data of 1,335 consecutive boys who underwent testicular biopsy simultaneously with surgery for cryptorchidism. Horm. Res. 55, 21–27 (2001).

    CAS  PubMed  Google Scholar 

  3. Dieckmann, K. P. & Pichlmeier, U. Clinical epidemiology of testicular germ cell tumors. World J. Urol. 22, 2–14 (2004).

    Article  PubMed  Google Scholar 

  4. Schnack, T. H., Poulsen, G., Myrup, C., Wohlfahrt, J. & Melbye, M. Familial coaggregation of cryptorchidism, hypospadias, and testicular germ cell cancer: a nationwide cohort study. J. Natl. Cancer Inst. 102, 187–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Brennan, J. & Capel, B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat. Rev. Genet. 5, 509–521 (2004).

    Article  CAS  Google Scholar 

  6. Stukenborg, J. B., Colon, E. & Soder, O. Ontogenesis of testis development and function in humans. Sex Dev. 4, 199–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Geissler, W. M. et al. Male pseudohermaphroditism caused by mutations of testicular 17 beta-hydroxysteroid dehydrogenase 3. Nat. Genet. 7, 34–39 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Hughes, I. A., Houk, C., Ahmed, S. F. & Lee, P. A. Consensus statement on management of intersex disorders. J. Pediatr. Urol. 2, 148–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Codesal, J., Regadera, J., Nistal, M., Regadera-Sejas, J. & Paniagua, R. Involution of human fetal Leydig cells. An immunohistochemical, ultrastructural and quantitative study. J. Anat. 172, 103–114 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. O'Shaughnessy, P. J. et al. Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J. Clin. Endocrinol. Metab. 92, 792–794 (2007).

    Google Scholar 

  11. Svechnikov, K. et al. Origin, development and regulation of human Leydig cells. Horm. Res. Pediatr. 73, 93–101 (2010).

    Article  CAS  Google Scholar 

  12. Tapanainen, J., Kellokumpu-Lehtinen, P., Pelliniemi, L. & Huhtaniemi, I. Age-related changes in endogenous steroids of human fetal testis during early and midpregnancy. J. Clin. Endocrinol. Metab. 52, 98–102 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Lambrot, R. et al. Use of organ culture to study the human fetal testis development: effect of retinoic acid. J. Clin. Endocrinol. Metab. 91, 2696–2703 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Rabinovici, J. & Jaffe, R. B. Development and regulation of growth and differentiated function in human and subhuman primate fetal gonads. Endocr. Rev. 11, 532–557 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Sultan, C. et al. Disorders linked to insufficient androgen action in male children. Hum. Reprod. Update 7, 314–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kremer, H. et al. Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nat. Genet. 9, 160–164 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Andersson, A. M. et al. Longitudinal reproductive hormone profiles in infants: peak of inhibin B levels in infant boys exceeds levels in adult men. J. Clin. Endocrinol. Metab. 83, 675–681 (1998).

    CAS  PubMed  Google Scholar 

  18. Main, K. M., Schmidt, I. M. & Skakkebaek, N. E. A possible role for reproductive hormones in newborn boys: progressive hypogonadism without the postnatal testosterone peak. J. Clin. Endocrinol. Metab. 85, 905–907 (2000).

    Article  Google Scholar 

  19. Hutson, J. M. A biphasic model for the hormonal control of testicular descent. Lancet 2, 419–421 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Heyns, C. F. The gubernaculum during testicular descent in the human fetus. J. Anat. 153, 93–112 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Barteczko, K. J. & Jacob, M. I. The testicular descent in human. Origin, development and fate of the gubernaculum Hunteri, processus vaginalis peritonei, and gonadal ligaments. Adv. Anat. Embryol. Cell Biol. 156, 1–98 (2000).

    Article  Google Scholar 

  22. Backhouse, K. M. The gubernaculum testis Hunteri: Testicular descent and maldescent. Arris and Gale lecture delivered at The Royal College of Surgeons of England on 27th October 1959. Ann. R. Coll. Surg. Engl. 35, 15–33 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Heyns, C. F., Human, H. J., Werely, C. J. & De Klerk, D. P. The glycosaminoglycans of the gubernaculum during testicular descent in the fetus. J. Urol. 143, 612–617 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Sampaio, F. J. & Favorito, L. A. Analysis of testicular migration during the fetal period in humans. J. Urol. 159, 540–542 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Costa, W. S., Sampaio, F. J., Favorito, L. A. & Cardoso, L. E. Testicular migration: remodeling of connective tissue and muscle cells in human gubernaculum testis. J. Urol. 167, 2171–2176 (2002).

    Article  PubMed  Google Scholar 

  26. Huynh, J., Shenker, N. S., Nightingale, S. & Hutson, J. M. Signaling molecules: clues from development of the limb bud for cryptorchidism? Pediatr. Surg. Int. 23, 617–624 (2007).

    Article  PubMed  Google Scholar 

  27. Rotondi, M. et al. Prenatal measurement of testicular diameter by ultrasonography: development of fetal male gender and evaluation of testicular descent. Prenat. Diagn. 21, 112–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Zimmermann, S. et al. Targeted disruption of the INSL3 gene causes bilateral cryptorchidism. Mol. Endocrinol. 13, 681–691 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Nef, S. & Parada, L. F. Cryptorchidism in mice mutant for INSL3. Nat. Genet. 22, 295–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Overbeek, P. A. et al. A transgenic insertion causing cryptorchidism in mice. Genesis 30, 26–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kumagai, J. et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J. Biol. Chem. 277, 31283–31286 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Kubota, Y. et al. The role of insulin 3, testosterone, Müllerian inhibiting substance and relaxin in rat gubernacular growth. Mol. Hum. Reprod. 8, 900–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Kaftanovskaya, E. M. et al. Suppression of Insulin-like3 receptor reveals the role of beta-catenin and Notch signaling in gubernaculum development. Mol. Endocrinol. 25, 170–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, K. J. et al. Insulin-like 3 exposure of the fetal rat gubernaculum modulates expression of genes involved in neural pathways. Biol. Reprod. 83, 774–782 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Tomiyama, H., Hutson, J. M., Truong, A. & Agoulnik, A. I. Transabdominal testicular descent is disrupted in mice with deletion of insulinlike factor 3 receptor. J. Pediatr. Surg. 38, 1793–1798 (2003).

    Article  PubMed  Google Scholar 

  36. Adham, I. M. et al. The overexpression of the insl3 in female mice causes descent of the ovaries. Mol. Endocrinol. 16, 244–252 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Anand-Ivell, R., Ivell, R., Driscoll, D. & Manson, J. Insulin-like factor 3 levels in amniotic fluid of human male fetuses. Hum. Reprod. 23, 1180–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Bay, K. et al. Insulin-like factor 3 levels in second-trimester amniotic fluid. J. Clin. Endocrinol. Metab. 93, 4048–4051 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Josso, N., Belville, C., di, C. N. & Picard, J. Y. AMH and AMH receptor defects in persistent Müllerian duct syndrome. Hum. Reprod. Update 11, 351–356 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Bartlett, J. E. et al. Gubernacular development in Mullerian inhibiting substance receptor-deficient mice. BJU Int. 89, 113–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Quigley, C. A. et al. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr. Rev. 16, 271–321 (1995).

    CAS  PubMed  Google Scholar 

  42. Ahmed, S. F. et al. Phenotypic features, androgen receptor binding, and mutational analysis in 278 clinical cases reported as androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 85, 658–665 (2000).

    CAS  PubMed  Google Scholar 

  43. Hannema, S. E. et al. Testicular development in the complete androgen insensitivity syndrome. J. Pathol. 208, 518–527 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hutson, J. M., Baker, M., Terada, M., Zhou, B. & Paxton, G. Hormonal control of testicular descent and the cause of cryptorchidism. Reprod. Fertil. Dev. 6, 151–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Shono, T. et al. Scanning electron microscopy shows inhibited gubernacular development in relation to undescended testes in estrogen-treated mice. Int. J. Androl. 19, 263–270 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Hosie, S., Wessel, L. & Waag, K. L. Could testicular descent in humans be promoted by direct androgen stimulation of the gubernaculum testis? Eur. J. Pediatr. Surg. 9, 37–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Barthold, J. S., Kumasi-Rivers, K., Upadhyay, J., Shekarriz, B. & Imperato-McGinley, J. Testicular position in the androgen insensitivity syndrome: implications for the role of androgens in testicular descent. J. Urol. 164, 497–501 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Yong, E. X. et al. Calcitonin gene-related peptide stimulates mitosis in the tip of the rat gubernaculum in vitro and provides the chemotactic signals to control gubernacular migration during testicular descent. J. Pediatr. Surg. 43, 1533–1539 (2008).

    Article  PubMed  Google Scholar 

  49. Zuccarello, D. et al. Preliminary data suggest that mutations in the CGRP pathway are not involved in human sporadic cryptorchidism. J. Endocrinol. Invest. 27, 760–764 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, F. P. et al. The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH-receptor-knockout mice. Reproduction 139, 759–769 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lague, E. & Tremblay, J. J. Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology 149, 688–694 (2008).

    Article  CAS  Google Scholar 

  52. Bay, K. et al. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J. Clin. Endocrinol. Metab. 92, 4020–4027 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Bay, K. et al. Insulin-Like Factor 3 (INSL3) Serum Levels in 135 normal men and 85 men with testicular disorders: relationship to the LH–testosterone axis. J. Clin. Endocrinol. Metab. 90, 3410–3418 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Anand-Ivell, R. et al. Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int. J. Androl. 29, 618–626 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Wikstrom, A. M., Bay, K., Hero, M., Andersson, A. M. & Dunkel, L. Serum insulin-like factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J. Clin. Endocrinol. Metab. 91, 4705–4708 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Bay, K. & Andersson, A. M. Human testicular insulin-like factor 3: in relation to development, reproductive hormones and andrological disorders. Int. J. Androl. doi:10.1111/j.1365–26052010.01074.x.

  57. Ivell, R. et al. Relaxin-like factor: a highly specific and constitutive new marker for Leydig cells in the human testis. Mol. Hum. Reprod. 3, 459–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Kawamura, K. et al. Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc. Natl Acad. Sci. USA 101, 7323–7328 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Anand-Ivell, R. J. et al. Expression of the insulin-like peptide 3 (INSL3) hormone-receptor (LGR8) system in the testis. Biol. Reprod. 74, 945–953 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Feng, S. et al. Developmental expression and gene regulation of insulin-like 3 receptor RXFP2 in mouse male reproductive organs. Biol. Reprod. 77, 671–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen, M. T. et al. Effects of orchiopexy on congenitally cryptorchid insulin-3 knockout mice. J. Urol. 168, 1779–1783 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ferlin, A. et al. Mutations in the insulin-like factor 3 receptor are associated with osteoporosis. J. Bone Miner. Res. 23, 683–693 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hombach-Klonisch, S. et al. INSL3 has tumor-promoting activity in thyroid cancer. Int. J. Cancer 127, 521–531 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Scorer, C. G. The descent of the testis. Arch. Dis. Child. 39, 605–609 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Berkowitz, G. S. et al. Prevalence and natural history of cryptorchidism. Pediatrics 92, 44–49 (1993).

    CAS  PubMed  Google Scholar 

  66. Ghirri, P. et al. Incidence at birth and natural history of cryptorchidism: a study of 10,730 consecutive male infants. J. Endocrinol. Invest. 25, 709–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Boisen, K. A. et al. Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet 363, 1264–1269 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Preiksa, R. T. et al. Higher than expected prevalence of congenital cryptorchidism in Lithuania: a study of 1204 boys at birth and 1 year follow-up. Hum. Reprod. 20, 1928–1932 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Acerini, C. L., Miles, H. L., Dunger, D. B., Ong, K. K. & Hughes, I. A. The descriptive epidemiology of congenital and acquired cryptorchidism in a UK infant cohort. Arch. Dis. Child. 94, 868–872 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Toledano, M. B. et al. Temporal trends in orchidopexy, Great Britain, 1992–1998. Environ. Health Perspect. 111, 129–132 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Capello, S. A., Giorgi, L. J. Jr & Kogan, B. A. Orchiopexy practice patterns in New York State from 1984 to 2002. J. Urol. 176, 1180–1183 (2006).

    Article  PubMed  Google Scholar 

  72. Cortes, D., Kjellberg, E. M., Breddam, M. & Thorup, J. The true incidence of cryptorchidism in Denmark. J. Urol. 179, 314–318 (2008).

    Article  PubMed  Google Scholar 

  73. Paulozzi, L. J. International trends in rates of hypospadias and cryptorchidism. Environ. Health Perspect. 107, 297–302 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chilvers, C., Pike, M. C., Forman, D., Fogelman, K. & Wadsworth, M. E. Apparent doubling of frequency of undescended testis in England and Wales in 1962–81. Lancet 2, 330–332 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Hack, W. W. et al. Prevalence of acquired undescended testis in 6-year, 9-year and 13-year-old Dutch schoolboys. Arch. Dis. Child. 92, 17–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Wohlfahrt-Veje, C. et al. Acquired cryptorchidism is frequent in infancy and childhood. Int. J. Androl. 32, 423–428 (2009).

    Article  PubMed  Google Scholar 

  77. Ritzen, E. M. et al. Nordic consensus on treatment of undescended testes. Acta Pediatr. 96, 638–643 (2007).

    Article  Google Scholar 

  78. Ashley, R. A., Barthold, J. S. & Kolon, T. F. Cryptorchidism: pathogenesis, diagnosis, treatment and prognosis. Urol. Clin. North Am. 37, 183–193 (2010).

    Article  PubMed  Google Scholar 

  79. Biggs, M. L., Baer, A. & Critchlow, C. W. Maternal, delivery, and perinatal characteristics associated with cryptorchidism: a population-based case-control study among births in Washington State. Epidemiology 13, 197–204 (2002).

    Article  PubMed  Google Scholar 

  80. Virtanen, H. E. et al. Mild gestational diabetes as a risk factor for congenital cryptorchidism. J. Clin. Endocrinol. Metab. 91, 4862–4865 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Weidner, I. S., Moller, H., Jensen, T. K. & Skakkebaek, N. E. Risk factors for cryptorchidism and hypospadias. J. Urol. 161, 1606–1609 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Schnack, T. H. et al. Familial aggregation of cryptorchidism—a nationwide cohort study. Am. J. Epidemiol. 167, 1453–1457 (2008).

    Article  PubMed  Google Scholar 

  83. Jensen, M. S. et al. Cryptorchidism concordance in monozygotic and dizygotic twin brothers, full brothers, and half-brothers. Fertil. Steril. 93, 124–129 (2010).

    Article  PubMed  Google Scholar 

  84. Sohval, A. R. Testicular dysgenesis as an etiologic factor in cryptorchidism. J. Urol. 72, 693–702 (1954).

    Article  CAS  PubMed  Google Scholar 

  85. Giwercman, A., Bruun, E., Frimodt-Moller, C. & Skakkebaek, N. E. Prevalence of carcinoma in situ and other histopathological abnormalities in testes of men with a history of cryptorchidism. J. Urol. 142, 998–1001 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Skakkebaek, N. E., Rajpert-De Meyts, E. & Main, K. M. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum. Reprod. 16, 972–978 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Holm, M., Rajpert-De Meyts, E., Andersson, A. M. & Skakkebaek, N. E. Leydig cell micronodules are a common finding in testicular biopsies from men with impaired spermatogenesis and are associated with decreased testosterone/LH ratio. J. Pathol. 199, 378–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Nielsen, H., Nielsen, M. & Skakkebaek, N. E. The fine structure of possible carcinoma in situ in the seminiferous tubules in the testis of four infertile men. Acta Pathol. Microbiol. Scand. A. 82, 235–248 (1974).

    CAS  PubMed  Google Scholar 

  89. Rajpert-De Meyts, E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum. Reprod. Update 12, 303–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Jorgensen, N., Meyts, E. R., Main, K. M. & Skakkebaek, N. E. Testicular dysgenesis syndrome comprises some but not all cases of hypospadias and impaired spermatogenesis. Int. J. Androl. 33, 298–303 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Schnack, T. H., Poulsen, G., Myrup, C., Wohlfahrt, J. & Melbye, M. Familial coaggregation of cryptorchidism and hypospadias. Epidemiology 21, 109–113 (2010).

    Article  PubMed  Google Scholar 

  92. Clemmesen, J. A doubling of morbidity from testis carcinoma in Copenhagen, 1943–1962. Acta Pathol. Microbiol. Scand. 72, 348–349 (1968).

    Article  CAS  PubMed  Google Scholar 

  93. Richiardi, L. et al. Testicular cancer incidence in eight northern European countries: secular and recent trends. Cancer Epidemiol. Biomarkers Prev. 13, 2157–2166 (2004).

    PubMed  Google Scholar 

  94. Huyghe, E., Matsuda, T. & Thonneau, P. Increasing incidence of testicular cancer worldwide: a review. J. Urol. 170, 5–11 (2003).

    Article  PubMed  Google Scholar 

  95. Carlsen, E., Giwercman, A., Keiding, N. & Skakkebaek, N. E. Evidence for decreasing quality of semen during past 50 years. BMJ 305, 609–613 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Auger, J., Kunstmann, J. M., Czyglik, F. & Jouannet, P. Decline in semen quality among fertile men in Paris during the past 20 years. N. Engl. J. Med. 332, 281–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Swan, S. H., Elkin, E. P. & Fenster, L. The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Environ. Health Perspect. 108, 961–966 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lund, L. et al. Prevalence of hypospadias in Danish boys: a longitudinal study, 1977–2005. Eur. Urol. 55, 1022–1026 (2009).

    Article  PubMed  Google Scholar 

  99. Boisen, K. et al. Hypospadias in a cohort of 1072 Danish newborn boys: prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at 3 months of age. J. Clin. Endocrinol. Metab. 90, 4041–4046 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Jorgensen, N. et al. East-West gradient in semen quality in the Nordic-Baltic area: a study of men from the general population in Denmark, Norway, Estonia and Finland. Hum. Reprod. 17, 2199–2208 (2002).

    Article  PubMed  Google Scholar 

  101. Hemminki, K. & Li, X. Cancer risks in Nordic immigrants and their offspring in Sweden. Eur. J. Cancer 38, 2428–2434 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Myrup, C. et al. Testicular cancer risk in first- and second-generation immigrants to Denmark. J. Natl. Cancer Inst. 100, 41–47 (2008).

    Article  PubMed  Google Scholar 

  103. Toppari, J. et al. Male reproductive health and environmental xenestrogens. Environ. Health Perspect. 104, 741–803 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gray, L. E. et al. Effects of environmental antiandrogens on reproductive development in experimental animals. Hum. Reprod. Update 7, 248–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Emmen, J. M. et al. Involvement of insulin-like factor 3 (INSL3) in diethylstilbestrol-induced cryptorchidism. Endocrinology 141, 846–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Nef, S., Shipman, T. & Parada, L. F. A molecular basis for estrogen-induced cryptorchidism. Dev. Biol. 224, 354–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Sharpe, R. M. Pathways of endocrine disruption during male sexual differentiation and masculinization. Best Pract. Res. Clin. Endocrinol. Metab. 20, 91–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Fisher, J. S., Macpherson, S., Marchetti, N. & Sharpe, R. M. Human 'testicular dysgenesis syndrome': a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum. Reprod. 18, 1383–1394 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Kristensen, P., Irgens, L. M., Andersen, A., Bye, A. S. & Sundheim, L. Birth defects among offspring of Norwegian farmers, 1967–1991. Epidemiology 8, 537–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Weidner, I. S., Moller, H., Jensen, T. K. & Skakkebaek, N. E. Cryptorchidism and hypospadias in sons of gardeners and farmers. Environ. Health Perspect. 106, 793–796 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fernandez, M. F. et al. Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case-control study. Environ. Health Perspect. 115 (Suppl. 1), 8–14 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Andersen, H. R. et al. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ. Health Perspect. 116, 566–572 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Damgaard, I. N. et al. Persistent pesticides in human breast milk and cryptorchidism. Environ. Health Perspect. 114, 1133–1138 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pierik, F. H., Klebanoff, M. A., Brock, J. W. & Longnecker, M. P. Maternal pregnancy serum level of heptachlor epoxide, hexachlorobenzene, and beta-hexachlorocyclohexane and risk of cryptorchidism in offspring. Environ. Res. 105, 364–369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Main, K. M. et al. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys. Environ. Health Perspect. 115, 1519–1526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Small, C. M. et al. Maternal exposure to a brominated flame retardant and genitourinary conditions in male offspring. Environ. Health Perspect. 117, 1175–1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McGlynn, K. A. et al. Maternal pregnancy levels of polychlorinated biphenyls and risk of hypospadias and cryptorchidism in male offspring. Environ. Health Perspect. 117, 1472–1476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jensen, M. S. et al. Maternal use of acetaminophen, ibuprofen, and acetylsalicylic acid during pregnancy and risk of cryptorchidism. Epidemiology 21, 779–785 (2010).

    Article  PubMed  Google Scholar 

  119. Kristensen, D. M. et al. Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat. Hum. Reprod. 26, 235–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Akre, O., Lipworth, L., Cnattingius, S., Sparen, P. & Ekbom, A. Risk factor patterns for cryptorchidism and hypospadias. Epidemiology 10, 364–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Jensen, M. S., Toft, G., Thulstrup, A. M., Bonde, J. P. & Olsen, J. Cryptorchidism according to maternal gestational smoking. Epidemiology 18, 220–225 (2007).

    Article  PubMed  Google Scholar 

  122. Thorup, J., Cortes, D. & Petersen, B. L. The incidence of bilateral cryptorchidism is increased and the fertility potential is reduced in sons born to mothers who have smoked during pregnancy. J. Urol. 176, 734–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Damgaard, I. N. et al. Risk factors for congenital cryptorchidism in a prospective birth cohort study. PLoS One 3, e3051 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Damgaard, I. N. et al. Cryptorchidism and maternal alcohol consumption during pregnancy. Environ. Health Perspect. 115, 272–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Jensen, M. S., Bonde, J. P. & Olsen, J. Prenatal alcohol exposure and cryptorchidism. Acta Pediatr. 96, 1681–1685 (2007).

    Article  CAS  Google Scholar 

  126. Strandberg-Larsen, K., Jensen, M. S., Ramlau-Hansen, C. H., Gronbaek, M. & Olsen, J. Alcohol binge drinking during pregnancy and cryptorchidism. Hum. Reprod. 24, 3211–3219 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Savion, M., Nissenkorn, I., Servadio, C. & Dickerman, Z. Familial occurrence of undescended testes. Urology 23, 355–358 (1984).

    Article  CAS  PubMed  Google Scholar 

  128. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  129. Aschim, E. L. et al. Linkage between cryptorchidism, hypospadias, and GGN repeat length in the androgen receptor gene. J. Clin. Endocrinol. Metab. 89, 5105–5109 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Castro-Nallar, E. et al. Androgen receptor gene cag and ggn repeat polymorphisms in Chilean men with primary severe spermatogenic failure. J. Androl. 31, 552–559 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Ferlin, A. et al. Androgen receptor gene CAG and GGC repeat lengths in cryptorchidism. Eur. J. Endocrinol. 152, 419–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Lim, H. N., Nixon, R. M., Chen, H., Hughes, I. A. & Hawkins, J. R. Evidence that longer androgen receptor polyglutamine repeats are a causal factor for genital abnormalities. J. Clin. Endocrinol. Metab. 86, 3207–3210 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Sasagawa, I. et al. CAG repeat length of the androgen receptor gene in Japanese males with cryptorchidism. Mol. Hum. Reprod. 6, 973–975 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Silva-Ramos, M. et al. The CAG repeat within the androgen receptor gene and its relationship to cryptorchidism. Int. Braz. J. Urol. 32, 330–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Koskimies, P. et al. A common polymorphism in the human relaxin-like factor (RLF) gene: no relationship with cryptorchidism. Pediatr. Res. 47, 538–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Lim, H. N., Rajpert-De Meyts, E., Skakkebæk, N. E., Hawkins, J. R. & Hughes, I. A. Genetic analysis of the INSL3 gene in patients with maldescent of the testis. Eur. J. Endocrinol. 144, 129–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Roh, J. et al. Lack of LGR8 gene mutation in Finnish patients with a family history of cryptorchidism. Reprod. Biomed. Online 7, 400–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Feng, S. et al. Mutation analysis of INSL3 and GREAT/LGR8 genes in familial cryptorchidism. Urology 64, 1032–1036 (2004).

    Article  PubMed  Google Scholar 

  139. Bogatcheva, N. V. et al. T222P mutation of the insulin-like 3 hormone receptor LGR8 is associated with testicular maldescent and hinders receptor expression on the cell surface membrane. Am. J. Physiol. Endocrinol. Metab. 292, E138–E144 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Foresta, C., Zuccarello, D., Garolla, A. & Ferlin, A. Role of hormones, genes, and environment in human cryptorchidism. Endocr. Rev. 29, 560–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Ferlin, A. et al. Genetic alterations associated with cryptorchidism. JAMA 300, 2271–2276 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. El Houate, B. et al. No association between T222P/LGR8 mutation and cryptorchidism in the Moroccan population. Horm. Res. 70, 236–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Nuti, F. et al. The leucine-rich repeat-containing G protein-coupled receptor 8 gene T222P mutation does not cause cryptorchidism. J. Clin. Endocrinol. Metab. 93, 1072–1076 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Ars, E. et al. Further insights into the role of T222P variant of RXFP2 in non-syndromic cryptorchidism in two Mediterranean populations. Int. J. Androl. doi:10.1111/j.1365–26052010.01088.x.

  145. Kolon, T. F. et al. Analysis of homeobox gene HOXA10 mutations in cryptorchidism. J. Urol. 161, 275–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Bertini, V. et al. Homeobox HOXA10 gene analysis in cryptorchidism. J. Pediatr. Endocrinol. Metab. 17, 41–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Gottlieb, B., Beitel, L. K. & Trifiro, M. A. Androgen insensitivity syndrome. In Gene Reviews [online] (eds Pagon, R. A., Bird, T. C., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 1999).

    Google Scholar 

  148. Lanfranco, F., Kamischke, A., Zitzmann, M. & Nieschlag, E. Klinefelter's syndrome. Lancet 364, 273–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Quinton, R. et al. Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization. Clin. Endocrinol. (Oxf.) 55, 163–174 (2001).

    Article  CAS  Google Scholar 

  150. Wu, S. M. & Chan, W. Y. Male pseudohermaphroditism due to inactivating luteinizing hormone receptor mutations. Arch. Med. Res. 30, 495–500 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Drake, A. J. et al. Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production and male reproductive development. Endocrinology 150, 5055–5064 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Krysiak-Baltyn, K. et al. Country-specific chemical signatures of persistent environmental compounds in breast milk. Int. J. Androl. 33, 270–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Watanabe, M. et al. Haplotype analysis of the estrogen receptor 1 gene in male genital and reproductive abnormalities. Hum. Reprod. 22, 1279–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Galan, J. J. et al. Molecular analysis of estrogen receptor alpha gene AGATA haplotype and SNP12 in European populations: potential protective effect for cryptorchidism and lack of association with male infertility. Hum. Reprod. 22, 444–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Audouze, K. et al. Deciphering diseases and biological targets for environmental chemicals using toxicogenomics networks. PLoS. Comput. Biol. 20, e1000788 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of content and reviewed and edited the article before submission. K. Bay and J. Toppari wrote the manuscript.

Corresponding author

Correspondence to Katrine Bay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bay, K., Main, K., Toppari, J. et al. Testicular descent: INSL3, testosterone, genes and the intrauterine milieu. Nat Rev Urol 8, 187–196 (2011). https://doi.org/10.1038/nrurol.2011.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing