Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling

Abstract

A new computational procedure which simultaneously provides gap closure and side-chain positioning in homology modelling is described. It uses a database search scheme to generate fragments to model gaps, a rotamer library to define side-chain conformations, and iteratively refines a conformational matrix CM, such that its elements CM(i,j,0) and CM(i,j,k) give the probabilities that the backbone of residue i adopts the conformation described by fragment j and that its side-chain adopts the conformation of its possible rotamer k. Each residue experiences the average of all possible environments, weighted by their respective probabilities. The method converges, thereby deserving the name of ‘self consistent mean field’ approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thornton, J.M., Flores, T.P., Jones, D.T. & Swindells, M.B. Prediction of progress at last. Nature 354, 105 (1991).

    Article  CAS  Google Scholar 

  2. Benner, S.A., Predicting de novo the folded structure of proteins. Curr. Opin. struct. Biol. 2, 402–412 (1992).

    Article  CAS  Google Scholar 

  3. Karplus, M. & Shakhnovich, E. Protein folding: theoretical studies of thermodynamics and dynamics. In Protein Folding Ed., Creighton, T.E. 127–196 (W.H. Freeman and Company, New York; 1992).

    Google Scholar 

  4. Chothia, C. & Lesk, A.M. The relation between the divergence of sequence and structure in proteins. EMBO J., 5, 823–826 (1986).

    Article  CAS  Google Scholar 

  5. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. molec. Biol. 234, 719–815 (1993).

    Article  Google Scholar 

  6. Hubbard, T.J.P. & Blundell, T.L. Comparison of solvent inaccessible cores of homologous proteins : definitions useful for protein modelling. Prot. Engng. 1, 159–171 (1988).

    Article  Google Scholar 

  7. Jones, T.A. & Thirup, S. Using known substructures in protein model building and crystallography. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  8. Summers, N.L. & Karplus, M. Modelling of globular proteins. A distance-based search procedure for the construction of insertion/deletion regions and Pro↔nonPro mutations. J. molec. Biol. 216, 991–1016 (1990).

    Article  CAS  Google Scholar 

  9. Moult, J. & James, M.N.G. An algorithm for determining the conformation of polypeptide segments in protein by systematic search. Proteins: Struct. Funct. Genet 1, 146–163 (1986).

    Article  CAS  Google Scholar 

  10. Bruccoleri, R.E. & Karplus, M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26, 137–168 (1987).

    Article  CAS  Google Scholar 

  11. Go, N. & Scheraga, H.A. Ring closure and local conformational deformations of chain molecules. Macromolecules, 3, 178–187 (1970).

    Article  CAS  Google Scholar 

  12. Bruccoleri, R.E. & Karplus, M. Chain closure with bond angle variations. Macromolecules 18, 2767 (1985).

    Article  CAS  Google Scholar 

  13. Palmer, K.A. & Scheraga, H.A. Standard geometry chains fitted to X-ray derived structures: validation of the rigid-geometry approximation. I. Chain closure through a limited search of ‘loop’ conformations. J. comp. Chem. 12, 505–526 (1991).

    Article  CAS  Google Scholar 

  14. Zheng, Q., Rosenfeld, R., Vajda, S. & DeLisi, C. Loop closure via bond scaling and relaxation. J. Comp. Chem. 14, 556–565 (1993).

    Article  CAS  Google Scholar 

  15. Zheng, Q., Rosenfeld, R., DeLisi, C. & Kyle, J.D. Multiple copy sampling in protein loop modeling: computational efficiency and sensitivity to dihedral angle pertubations. Prot. Sci. 3, 493–506 (1994).

    Article  CAS  Google Scholar 

  16. Roitberg, A. & Elber, R. Modelling side-chains in peptides and proteins: application of the locally enhanced sampling and the simulated annealing method to find minimum energy conformations. J. Chem. Phys, 95, 9277–9287 (1991).

    Article  CAS  Google Scholar 

  17. Lee, C. & Subbiah, S. Prediction of protein side-chain conformation by packing optimisation. J. molec. Biol. 217, 373–388 (1991).

    Article  CAS  Google Scholar 

  18. Holm, L. & Sander, C. Database algorithm for generating protein backbone and side-chain coordinates from Cα trace: application to model building and detection of co-ordinate errors. J. molec. Biol 218, 183–194 (1991).

    Article  CAS  Google Scholar 

  19. Lee, C. Predicting protein mutant energetics by self consistent ensemble optimisation. J. molec. Biol 236, 918–939 (1994).

    Article  CAS  Google Scholar 

  20. Koehl, P. & Delarue, M. Application of a self-consistent mean field theory to predict side-chains conformation and estimate their conformational entropy. J. molec. Biol, 239, 249–275 (1994).

    Article  CAS  Google Scholar 

  21. Wilson, C., Gregoret, L.M. & Agard, D.A. Modelling side-chain conformation for homologous proteins using an energy-based rotamer search. J. molec. Biol 229, 996–1006 (1993).

    Article  CAS  Google Scholar 

  22. Nilges, M. and Brünger, A.T. Automated modeling of coiled coils: application to the GCN4 dimerization region. Prot. Eng., 4, 649–659 (1991).

    Article  CAS  Google Scholar 

  23. Eisenmenger, F., Argos, P. & Abagyan, R. A method to configure protein side-chains from the main-chain trace in homology modelling. J. molec. Biol. 231, 849–860 (1993).

    Article  CAS  Google Scholar 

  24. Dunbrack, R.L., Jr, & Karplus, M. Backbone-dependent rotamer library for proteins : Application to side-chain prediction. J, molec. Biol. 230, 543–571 (1993).

    Article  CAS  Google Scholar 

  25. Tuffery, P., Etchebest, C., Hazout, S. & Lavery, R. A new approach to the rapid determination of protein side-chain conformation. J. biomolec. Struct. Dynam. 8, 1267–1289 (1991).

    Article  CAS  Google Scholar 

  26. Desmet, J., DeMaeyer, M., Hazes, B. & Lasters, I. The deadend elimination theorem and its use in protein side-chain positioning. Nature 356, 539–542 (1992).

    Article  CAS  Google Scholar 

  27. Lasters, I. & Desmet, J. The fuzzy-end elimination theorem : correctly implementing the side-chain placement algorithm based on the dead-end elimination theorem. Prot. Engng. 6, 717–722 (1993).

    Article  CAS  Google Scholar 

  28. Elber, R. & Karplus, M. Enhanced sampling in molecular dynamics : use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. chem. Soc 112, 9161–9175 (1990).

    Article  CAS  Google Scholar 

  29. Czerminski, R. & Elber, R. Computational studies of ligand diffusion in globins : I Leghemoglobin. Proteins Struct. Funct. Genet., 10, 70–80 (1991).

    Article  CAS  Google Scholar 

  30. Caflish, A., Miranker, A. & Karplus, M. Multiple copy simultaneous search and construction of ligands in binding sites: Application, to inhibitors of HIV-1 aspartic proteinase. J. med. Chem. 36, 2142–2164 (1993).

    Article  Google Scholar 

  31. Finkelstein, A.V. & Reva, B.A. A search for the most stable folds of protein chains. Nature 351, 497–499 (1991).

    Article  CAS  Google Scholar 

  32. Rabow, A. A. & Scheraga, H.A. Lattice neural network optimization for locating the global minimum conformations of proteins. J. molec. Biol. 232, 1157–1168 (1993).

    Article  CAS  Google Scholar 

  33. Fidelis, K., Stern, P.S., Bacon, D. & Moult, J. Comparison of systematic search and database methods for constructing segments of protein structure. Prot. Engng 7, 953–960 (1994).

    Article  CAS  Google Scholar 

  34. Berstein, F.C. et al. The protein databank: a computer-based archival file for macromolecular structures. J. molec. Biol., 112, 535–542 (1977).

    Article  Google Scholar 

  35. Devereux, J., Haeberli, P. & Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucleic. Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  36. Summers, N.L. & Karplus, M. Modelling of side-chains, loops, and insertions in proteins. Meths Enzymol. 202, 156–204 (1991).

    Article  CAS  Google Scholar 

  37. Dunbrack, R.L., Jr . & Karplus, M. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nature struct. Biol. 1, 334–340 (1994).

    Article  CAS  Google Scholar 

  38. Koehl, P. & Delarue, M. Polar and non polar atomic environments in the protein core : implications for folding and binding. Proteins Struct. Funct. Genet. 20, 264–278 (1994).

    Article  CAS  Google Scholar 

  39. Brooks, III, C.L., Bruccoleri, R.E., Olafson, B.P., States, D.J., Swaminathan, S. & Karplus, M. CHARMM : a program for macromolecular energy minimization and dynamics calculations. J. comp. Chem., 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  40. Brunger, A.T. & Karplus, M. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins Struct. Funct. Genet, 4, 148–156 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehl, P., Delarue, M. A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling. Nat Struct Mol Biol 2, 163–170 (1995). https://doi.org/10.1038/nsb0295-163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0295-163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing