Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Representation of the secondary and tertiary structure of group I introns

Abstract

Group I introns, which are widespread in nature, carry out RNA self–splicing. The secondary structure common to these introns was for the most part established a decade ago. Information about their higher order structure has been derived from a range of experimental approaches, comparative sequence analysis, and molecular modelling. This information now provides the basis for a new two–dimensional structural diagram that more accurately represents the domain organization and orientation of helices within the intron, the coaxial stacking of certain helices, and the proximity of key nucleotides in three–dimensional space. It is hoped that this format will facilitate the detailed comparison of group I intron structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Michel, F., Jacquier, A. & Dujon, B. Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64, 867–881 (1982).

    Article  CAS  Google Scholar 

  2. Davies, R.W., Waring, R.B., Ray, J.A., Brown, T.A. & Scazzocchio, C. Making ends meet: A model for RNA splicing in fungal mitochondria. Nature 300, 719–724 (1982).

    Article  CAS  Google Scholar 

  3. Michel, F. & Dujon, B. Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast-, and nuclear- encoded members. EMBO J. 2, 33–38 (1983).

    Article  CAS  Google Scholar 

  4. Waring, R.B., Scazzocchio, C., Brown, T.A. & Davies, R.W. Close relationship between certain nuclear and mitochondrial introns. J. molec. Biol. 167, 595–605 (1983).

    Article  CAS  Google Scholar 

  5. Cech, T.R. et al. Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: Structural homology with fungal mitochondrial intervening sequences. Proc. natn. Acad. Sci. USA 80, 3903–3907 (1983).

    Article  CAS  Google Scholar 

  6. Snub, D.A. et al. Structural conservation between three homologous introns of phage T4 and the group I introns of eukaryotes. Proc. natn. Acad. Sci. U.S.A. 85, 1151–1155 (1988).

    Article  Google Scholar 

  7. Xu, M.Q., Kathe, S.D., Goodrich-Blair, H., Nierzwicki, S.A. & Shub, D.A. Bacterial origin of a chloroplast intron: Conserved self-splicing group I introns in cyanobacteria. Science 250, 1566–1570 (1990).

    Article  CAS  Google Scholar 

  8. Kuhsel, M.G., Strickland, R. & Palmer, J.D. An ancient group I intron shared by eubacteria and chloroplasts. Science. 250, 1570–1573 (1990).

    Article  CAS  Google Scholar 

  9. Cech, T.R., Herschlag, D., Piccirilli, J.A. & Pyle, A.M. RNA catalysis by a group I ribozyme: Developing a model for transition state stabilization. J. biol. Chem. 267, 1749–17482 (1992).

    Google Scholar 

  10. Cech, T.R. Self-splicing of group I introns. A. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  Google Scholar 

  11. Gampel, A., Nishikimi, M. & Tzagoloff, A. CBP2 protein promotes in vitro excision of a yeast mitochondrial group I intron. Molec. cell Biol. 9, 5424–5433 (1989).

    Article  CAS  Google Scholar 

  12. Lambowitz, A.M. & Perlman, P.S. Involvement of aminoacyl-tRNA synthetases and othe proteins in group I and group II intron splicing. Trends biochem. Sci. 15, 440–444 (1990).

    Article  Google Scholar 

  13. Guo, Q. & Lambowitz, A.M. A tyrosyl-tRNA synthetase binds specifically to the group I intron catalytic core. Genes Dev. 6, 1357–1372 (1992).

    Article  CAS  Google Scholar 

  14. Cech, T.R. Conserved sequences and structures of group I introns: Building an active site for RNA catalysis. Gene 73, 259–271 (1988).

    Article  CAS  Google Scholar 

  15. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. molec. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  16. Been, M.D. et al. Structures involved in Tetrahymena rRNA self-splicing and RNA enzyme activity. Cold Spring Harb. Symp. quant. Biol. LII, 147–157 (1987).

    Article  Google Scholar 

  17. Burke, J.M. Molecular genetics of group I introns: RNA structures and protein factors required for splicing — A review. Gene 73, 273–294 (1988).

    Article  CAS  Google Scholar 

  18. Couture, S. et al. Mutational analysis of conserved nucleotides in a self-splicing group I intron. J. molec. Biol. 215, 345–358 (1990).

    Article  CAS  Google Scholar 

  19. Burke, J.M. et al. Structural conventions for group I introns. Nucleic Acids Res. 15, 7217–7221 (1987).

    Article  CAS  Google Scholar 

  20. Michel, F., Hanna, M., Green, R., Bartel, D.P. & Szostak, J.W. The guanosine binding site of the Tetrahymena ribozyme. Nature 342, 391–395 (1989).

    Article  CAS  Google Scholar 

  21. Michel, F., Ellington, A.D., Couture, S. & Szostak, J.W. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature 347, 578–580 (1990).

    Article  CAS  Google Scholar 

  22. Wang, J.-F. & Cech, T.R. Tertiary structure around the guanosine-binding site of the Tetrahymena ribozyme. Science 256, 526–529 (1992).

    Article  CAS  Google Scholar 

  23. Wang, J.-F., Downs, W.D. & Cech, T.R. Movement of the guide sequence during RNA catalysis by a group I ribozyme. Science 260, 504–508 (1993).

    Article  CAS  Google Scholar 

  24. Pyle, A.M., Murphy, F.L. & Cech, T.R. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358, 123–128 (1992).

    Article  CAS  Google Scholar 

  25. Michel, F. et al. Activation of the catalytic core of a group I intron by a remote 3′ splice site. Genes Dev. 6, 1373–1385 (1992).

    Article  CAS  Google Scholar 

  26. Jaeger, L., Westhof, E. & Michel, F. Function of P11, a tertiary base pairing in self-splicing introns of subgroup IA. J. molec. Biol. 221, 1153–1164 (1991).

    Article  CAS  Google Scholar 

  27. Murphy, F.L. & Cech, T.R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J. molec. Biol., 236, 49–63 (1994)

    Article  CAS  Google Scholar 

  28. Cech, T.R., Zaug, A.J. & Grabowski, P.J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981).

    Article  CAS  Google Scholar 

  29. Murphy, F.L. & Cech, T.R. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 32, 5291–5300 (1993).

    Article  CAS  Google Scholar 

  30. Herschlag, D. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry 31, 1386–1399 (1992).

    Article  CAS  Google Scholar 

  31. Bevilacqua, P.C., Kierzek, R., Johnson, K.A. & Turner, D.H. Dynamics of ribozyme binding of substrate revealed by fluorescence detected stopped-flow. Science 258, 1355–1358 (1992).

    Article  CAS  Google Scholar 

  32. Yarus, M., Illangesekare, M. & Christian, E. An axial binding site in the Tetrahymena precursor RNA. J. molec. Biol. 222, 995–1012 (1991).

    Article  CAS  Google Scholar 

  33. Yarus, M. & Majerfeld, I. Co-optimization of ribozyme substrate stacking and L-arginine binding. J. molec. Biol. 225, 945–949 (1992).

    Article  CAS  Google Scholar 

  34. Kim, S.-H. & Cech, T.R. Three-dimensional model of the active site of the Tetrahymena ribozyme. Proc. natn. Acad. Sci. U.S.A. 84, 8788–8792 (1987).

    Article  CAS  Google Scholar 

  35. Chastain, M. & Tinoco, Jr., I. A base-triple structural domain in RNA. Biochemistry 31, 12733–12741 (1992).

    Article  CAS  Google Scholar 

  36. Murphy, F.L. An independent domain of tertiary structure in the Tetrahymena group I intron. (Ph. D. Thesis, University of Colorado, 1992).

    Google Scholar 

  37. Wang, Y.-H., Murphy, F.L., Cech, T.R. & Griffith, J.D. Visualization of a tertiary structure domain of the Tetrahymena ribozyme by electron microscopy. J. molec. Biol., 236, 64–71 (1994).

    Article  CAS  Google Scholar 

  38. Chastain, M. & Tinoco, Jr, I. Nucleoside triples from the group I intron. Biochemistry 32, 14220–14228 (1993).

    Article  CAS  Google Scholar 

  39. Green, R. & Szostak, J.W. In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron. J. molec. Biol. 235, 140–155 (1994).

    Article  CAS  Google Scholar 

  40. Burke, J.M., Esherick, J.S., Burfeind, W.R. & King, J.L. A 3′ splice site-binding sequence in the catalytic core of a group I intron. Nature 344, 80–82 (1990).

    Article  CAS  Google Scholar 

  41. Michel, F., Netter, P., Xu, M.Q. & Shub, D.A. Mechanism of 3′ splice site selection by the catalytic core of the sunY intron of bacteriophage T4: the role of a novel base-pairing interaction in group I introns. Genes Dev. 4, 777–788 (1990).

    Article  CAS  Google Scholar 

  42. Suh, E.R. & Waring, R.B. Base pairing between the 3′ exon and an internal guide sequence increases 3′ splice site specificity in the Tetrahymena self splicing rRNA intron. Molec. cell Biol. 10, 2960–2965 (1990).

    Article  CAS  Google Scholar 

  43. Sun, X. et al. possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coll: nucleotide sequence of the cloned nrdD gene. Proc. natn. Acad. Sci. U.S.A. 90, 577–581 (1993).

    Article  CAS  Google Scholar 

  44. Gott, J.M., Shub, D.A. & Belfort, M. Multiple self-splicing introns in bacteriophage T4: Evidence from autocatalytic GTP labeling of RNA in vitro. Cell 47, 81–87 (1986).

    Article  CAS  Google Scholar 

  45. Jaeger, L., Westhof, E. & Michel, F. Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. J. molec. Biol. 234, 331–346 (1993).

    Article  CAS  Google Scholar 

  46. Jaeger, L., Michel, F. & Westhof, E. Involvement of a GNRA tetraloop in long-range tertiary interactions. J. molec. Biol., 236, 1271–1276 (1994).

    Article  CAS  Google Scholar 

  47. Beaudry, A.A. & Joyce, G.F. Directed evolution of an RNA enzyme. Science 257, 635–641 (1992).

    Article  CAS  Google Scholar 

  48. Lehman, N. & Joyce, G.F. Evolution in vitro of an RNA enzyme with altered metal dependence. Nature 361, 182–185 (1993).

    Article  CAS  Google Scholar 

  49. Green, R. & Szostak, J.W. Selection of a ribozyme that functions as a superior template in a self-copying reaction. Science 258, 1910–1915 (1992).

    Article  CAS  Google Scholar 

  50. Been, M.D. & Perotta, A.T. Group I intron self-splicing with adenosine: Evidence for a single nucleoside-binding site. Science 252, 434–437 (1991).

    Article  CAS  Google Scholar 

  51. Downs, W.D., & Cech, T.R., An ultraviolet-inducible adenosine-adenosine crosslink reflects the catalytic structure of the Tetrahymena ribozyme. Biochemistry 29, 5606–5613 (1990).

    Article  Google Scholar 

  52. Zaug, A.J., McEvoy, M.M. & Cech, T.R. Self-splicing of the group I intron from Anabaena pre-tRNA requires base-pairing of the exons in the anticodon stem. Biochemistry 32, 7946–7953 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cech, T., Damberger, S. & Gutell, R. Representation of the secondary and tertiary structure of group I introns. Nat Struct Mol Biol 1, 273–280 (1994). https://doi.org/10.1038/nsb0594-273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0594-273

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing