Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Manipulation of ligand binding affinity by exploitation of conformational coupling

Abstract

Traditional approaches for increasing the affinity of a protein for its ligand focus on constructing improved surface complementarity in the complex by altering the protein binding site to better fit the ligand. Here we present a novel strategy that leaves the binding site intact, while residues that allosterically affect binding are mutated. This method takes advantage of conformationally distinct states, each with different ligand-binding affinities, and manipulates the equilibria between these conformations. We demonstrate this approach in the Escherichia coli maltose binding protein by introducing mutations, located at some distance from the ligand binding pocket, that sterically affect the equilibrium between an open, apo-state and a closed, ligand-bound state. A family of 20 variants was generated with affinities ranging from a 100-fold improvement (7.4 nM) to a two-fold weakening (1.8 mM) relative to the wild type protein (800 nM).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ligand-mediated conformational changes in MBP.
Figure 2: Maltose binding affinities (Kd) of Ile 329 substitutions.
Figure 3: Correlation of maltose affinity with side chain volume.
Figure 4: Calorimetric analysis of maltose binding.
Figure 5: Kinetic analysis of maltose binding.

Similar content being viewed by others

References

  1. Lowman, H.B., Bass, S.H., Simpson, N. & Wells, J.A. Biochemistry 30, 10832–10838 (1991).

    Article  CAS  Google Scholar 

  2. Lowman, H.B. & Wells, J.A. J. Mol. Biol. 234, 564–578 (1993).

    Article  CAS  Google Scholar 

  3. Short, M.K., Jeffrey, P.D., Kwong, R.F. & Margolies, M.N. J. Biol. Chem. 270, 28541–28550 (1995).

    Article  CAS  Google Scholar 

  4. Saggio, I., Gloaguen, I., Poiana, G. & Laufer, R. EMBO J. 14, 3045–3054 (1995).

    Article  CAS  Google Scholar 

  5. Loladze, V.V., Ibarra-Molero, B., Sanchez-Ruiz, J.M. & Makhatadze, G.I. Biochemistry 38, 16419–16423. (1999).

    Article  CAS  Google Scholar 

  6. Gerstein, M., Lesk, A. & Chothia, C. Biochemistry 33, 6739–6749 (1994).

    Article  CAS  Google Scholar 

  7. Tam, R. & Saier, M.H. Microbiol. Rev. 57, 320–346 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Quiocho, F.A., Spurlino, J.C. & Rodseth, L.E. Structure 5, 997–1015 (1997).

    Article  CAS  Google Scholar 

  9. Sharff, A.J., Rodseth, L.E., Spurlino, J.C. & Quiocho, F.A. Biochemistry 31, 10657–10663 (1992).

    Article  CAS  Google Scholar 

  10. Marvin, J.S. et al. Proc. Natl. Acad. Sci. USA 94, 4366–4371 (1997).

    Article  CAS  Google Scholar 

  11. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.N. Anal. Biochem. 179, 131–137 (1989).

    Article  CAS  Google Scholar 

  12. Miller, D.M., Olson, J.S., Pflugrath, J.W. & Quiocho, F.A. J. Biol. Chem. 258, 13665–13672 (1983).

    CAS  PubMed  Google Scholar 

  13. Donner, J., Caruthers, M.H. & Gill, S.J. J. Biol. Chem. 257, 14826–14829 (1982).

    CAS  PubMed  Google Scholar 

  14. Sturtevant, J.M. Proc. Natl. Acad. Sci. USA 74, 2236–2240 (1977).

    Article  CAS  Google Scholar 

  15. Chervenak, M.C. & Toone, E.J. J. Am. Chem. Soc. 116, 10533–10539 (1994).

    Article  CAS  Google Scholar 

  16. Spolar, R.S. & Record, M.T. Science 263, 777–784 (1994).

    Article  CAS  Google Scholar 

  17. Johnson, K.A. In The enzymes, Vol 20. (ed. Boyer, P.D.)1–61 (Academic Press, Inc., San Diego; 1992).

    Google Scholar 

  18. Voss, E.W. J. Mol. Recogn. 6, 51–58 (1993).

    Article  CAS  Google Scholar 

  19. Kelley, R.L. & Yanofsky, C. Proc. Natl. Acad. Sci. USA 82, 483–487 (1985).

    Article  CAS  Google Scholar 

  20. Zhang, R.G. et al. Nature 327, 591–597 (1987).

    Article  CAS  Google Scholar 

  21. Vermersch, P.S., Tesmer, J.J., Lemon, D.D. & Quiocho, F.A. A J. Biol. Chem. 265, 16592–16603 (1990).

    CAS  PubMed  Google Scholar 

  22. Kundrot, C.E. & Evans, P.R. Biochemistry 30, 1478–1484 (1991).

    Article  CAS  Google Scholar 

  23. Shimaoka, M. et al. Nature Struct. Biol. 7, 674–678 (2000).

    Article  CAS  Google Scholar 

  24. Richardson, D.C. & Richardson, J.S. Protein Sci. 1, 3–9 (1992).

    Article  CAS  Google Scholar 

  25. Shrake, A. & Rupley, J.A. J. Mol. Biol. 79, 351–371. (1973).

    Article  CAS  Google Scholar 

  26. Hellinga, H.W. & Richards, F.M. J. Mol. Biol. 222, 763–785 (1991).

    Article  CAS  Google Scholar 

  27. Thomson, J., Liu, Y., Sturtevant, J.M. & Quiocho, F.A.A. Biophys. Chem. 70, 101–108 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E.J. Toone for helpful discussions regarding the thermodynamics of maltose binding. This work was funded by grants from the National Institutes of Health and the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homme W. Hellinga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marvin, J., Hellinga, H. Manipulation of ligand binding affinity by exploitation of conformational coupling. Nat Struct Mol Biol 8, 795–798 (2001). https://doi.org/10.1038/nsb0901-795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing