Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin

Abstract

Marine macrolide toxins of trisoxazole family target actin with high affinity and specificity and have promising pharmacological properties. We present X-ray structures of actin in complex with two members of this family, kabiramide C and jaspisamide A, at a resolution of 1.45 and 1.6 Å, respectively. The structures reveal the absolute stereochemistry of these toxins and demonstrate that their trisoxazole ring interacts with actin subdomain 1 while the aliphatic side chain is inserted into the hydrophobic cavity between actin subdomains 1 and 3. The binding site is essentially the same as the one occupied by the actin-capping domain of the gelsolin superfamily of proteins. The structural evidence suggests that actin filament severing and capping by these toxins is also analogous to that of gelsolin. Consequently, these macrolides may be viewed as small molecule biomimetics of an entire class of actin-binding proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of trisoxazole-containing macrolide toxins.
Figure 2: Trisoxazole-containing macrolide toxins bind to the same site on actin as gelsolin domain 1.
Figure 3: Kabiramide C binding to the actin filament may result in steric clashes with the neighboring actin subunit.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sheterline, P., Clayton, J. & Sparrow, J.C. Protein Profile: Actin (Oxford, New York, 1998).

    Google Scholar 

  2. Pollard, T.D., Blanchoin, L. & Mullins, R.D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  Google Scholar 

  3. Kwiatkowski, D.J. Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr. Opin. Cell. Biol. 11, 103–108 (1999).

    Article  CAS  Google Scholar 

  4. Sun, H.Q., Yamamoto, M., Mejillano, M. & Yin, H.L. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274, 33179–33182 (1999).

    Article  CAS  Google Scholar 

  5. McLaughlin, P.J., Gooch, J.T., Mannherz, H.G. & Weeds, A.G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364, 685–692 (1993).

    Article  CAS  Google Scholar 

  6. Morton, W.M., Ayscough, K.R. & McLaughlin, P.J. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat. Cell Biol. 2, 376–378 (2000).

    Article  CAS  Google Scholar 

  7. Dawson, J.F., Sablin, E.P., Spudich, J.A. & Fletterick, R.J. Structure of an F-actin trimer disrupted by gelsolin and implications for the mechanism of severing. J. Biol. Chem. 278, 1229–1238 (2003).

    Article  CAS  Google Scholar 

  8. Pope, B.J., Gonsior, S.M., Yeoh, S., McGough, A. & Weeds, A.G. Uncoupling actin filament fragmentation by cofilin from increased subunit turnover. J. Mol. Biol. 298, 649–661 (2000).

    Article  CAS  Google Scholar 

  9. Galkin, V.E., Orlova, A., Lukoyanova, N., Wriggers, W. & Egelman, E.H. Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J. Cell. Biol. 153, 75–86 (2001).

    Article  CAS  Google Scholar 

  10. Blondin, L. et al. The second ADF/cofilin actin-binding site exists in F-actin, the cofilin-G-actin complex, but not in G-actin. Eur. J. Biochem. 268, 6426–6434 (2001).

    Article  CAS  Google Scholar 

  11. Schutt, C.E., Myslik, J.C., Rozycki, M.D., Goonesekere, N.C. & Lindberg, U. The structure of crystalline profilin-β-actin. Nature 365, 810–816 (1993).

    Article  CAS  Google Scholar 

  12. Otterbein, L.R., Cosio, C., Graceffa, P. & Dominguez, R. Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system. Proc. Natl. Acad. Sci. USA 99, 8003–8008 (2002).

    Article  CAS  Google Scholar 

  13. Yeung, K.S. & Paterson, I. Actin-binding marine macrolides: total synthesis and biological importance. Angew. Chem. Int. Ed. Engl. 41, 4632–4653 (2002).

    Article  CAS  Google Scholar 

  14. Wada, S., Matsunaga, S., Saito, S., Fusetani, N. & Watabe, S. Actin-binding specificity of marine macrolide toxins, mycalolide B and kabiramide D. J. Biochem. 123, 946–952 (1998).

    Article  CAS  Google Scholar 

  15. Spector, I., Braet, F., Shochet, N.R. & Bubb, M.R. New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc. Res. Tech. 47, 18–37 (1999).

    Article  CAS  Google Scholar 

  16. Saito, S., Watabe, S., Ozaki, H., Fusetani, N. & Karaki, H. Mycalolide B, a novel actin depolymerizing agent. J. Biol. Chem. 269, 29710–29714 (1994).

    CAS  PubMed  Google Scholar 

  17. Saito, S. et al. Novel actin depolymerizing macrolide aplyronine A. J. Biochem. 120, 552–555 (1996).

    Article  CAS  Google Scholar 

  18. Jordan, M.A. & Wilson, L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell. Biol. 10, 123–130 (1998).

    Article  CAS  Google Scholar 

  19. Fenteany, G. & Zhu, S. Small-molecule inhibitors of actin dynamics and cell motility. Curr. Top. Med. Chem. 3, 593–616 (2003).

    Article  CAS  Google Scholar 

  20. Chik, J.K., Lindberg, U. & Schutt, C.E. The structure of an open state of β-actin at 2.65 Å resolution. J. Mol. Biol. 263, 607–623 (1996).

    Article  CAS  Google Scholar 

  21. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin:DNase I complex. Nature 347, 37–44 (1990).

    Article  CAS  Google Scholar 

  22. Otterbein, L.R., Graceffa, P. & Dominguez, R. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708–711 (2001).

    Article  CAS  Google Scholar 

  23. Liu, P. & Panek, J.S. Total synthesis of (−)-mycalolide A. J. Am. Chem. Soc. 122, 1235–1236 (2002).

    Article  Google Scholar 

  24. Chattopadhyay, S.K. & Pattenden, G. Total synthesis of ulapualide A, a novel tris-oxazole containing macrolide from the marine nudibranch Hexabranchus sanguineus. Tetrahedron Lett. 39, 6095–6098 (1998).

    Article  CAS  Google Scholar 

  25. Kernan, M.R. & Faulkner, J.D. Halichondramide, an antifungal macrolide from the sponge halichondria sp. Tetrahedron Lett. 28, 2809–2812 (1987).

    Article  CAS  Google Scholar 

  26. Sobolev, V., Sorokine, A., Prilusky, J., Abola, E.E. & Edelman, M. Automated analysis of interatomic contacts in proteins. Bioinformatics 15, 327–332 (1999).

    Article  CAS  Google Scholar 

  27. Tanaka, J. et al. Biomolecular mimicry in the actin cytoskeleton: mechanisms underlying the cytotoxicity of kabiramide C and related macrolides. Proc. Natl. Acad. Sci. USA (in the press).

  28. McGough, A. F-actin-binding proteins. Curr. Opin. Struct. Biol. 8, 166–176 (1998).

    Article  CAS  Google Scholar 

  29. Burtnick, L.D. et al. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell 90, 661–670 (1997).

    Article  CAS  Google Scholar 

  30. Eichinger, L. & Schleicher, M. Characterization of actin- and lipid-binding domains in severin, a Ca(2+)-dependent F-actin fragmenting protein. Biochemistry 31, 4779–4787 (1992).

    Article  CAS  Google Scholar 

  31. Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    Article  CAS  Google Scholar 

  32. Lorenz, M., Poole, K.J., Popp, D., Rosenbaum, G. & Holmes, K.C. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J. Mol. Biol. 246, 108–119 (1995).

    Article  CAS  Google Scholar 

  33. Tirion, M.M., ben-Avraham, D., Lorenz, M. & Holmes, K.C. Normal modes as refinement parameters for the F-actin model. Biophys. J. 68, 5–12 (1995).

    Article  CAS  Google Scholar 

  34. Orlova, A. et al. Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics. J. Mol. Biol. 312, 95–106 (2001).

    Article  CAS  Google Scholar 

  35. Tellam, R.L. Gelsolin inhibits nucleotide exchange from actin. Biochemistry 25, 5799–5804 (1986).

    Article  CAS  Google Scholar 

  36. Nishida, E. & Sakai, H. Kinetic analysis of actin polymerization. J. Biochem. 93, 1011–1020 (1983).

    Article  CAS  Google Scholar 

  37. Page, R., Lindberg, U. & Schutt, C.E. Domain motions in actin. J. Mol. Biol. 280, 463–474 (1998).

    Article  CAS  Google Scholar 

  38. Weber, A., Pring, M., Lin, S.L. & Bryan, J. Role of the N- and C-terminal actin-binding domains of gelsolin in barbed filament end capping. Biochemistry 30, 9327–9334 (1991).

    Article  CAS  Google Scholar 

  39. Eichinger, L., Noegel, A.A. & Schleicher, M. Domain structure in actin-binding proteins: expression and functional characterization of truncated severin. J. Cell Biol. 112, 665–676 (1991).

    Article  CAS  Google Scholar 

  40. Belmont, L.D., Patterson, G.M. & Drubin, D.G. New actin mutants allow further characterization of the nucleotide binding cleft and drug binding sites. J. Cell Sci. 112, 1325–1336 (1999).

    CAS  PubMed  Google Scholar 

  41. Matsunaga, S., Fusetani, N., Hashimoto, K., Koseki, K. & Noma, M. Bioactive marine metabolites. Part 13. Kabiramide C, a novel antifungal macrolide from nudibranch eggmasses. J. Am. Chem. Soc. 108, 847–849 (1986).

    Article  CAS  Google Scholar 

  42. Spudich, J.A. & Watt, S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  43. Rayment, I. Small-scale batch crystallization of proteins revisited. An underutilized way to grow large protein crystals. Structure 10, 147–151 (2002).

    Article  CAS  Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  45. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D 56, 1622–1624 (2000).

    Article  CAS  Google Scholar 

  46. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  47. Perrakis, A., Harkiolaki, M., Wilson, K.S. & Lamzin, V.S. ARP/wARP and molecular replacement. Acta Crystallogr. D 57, 1445–1450 (2001).

    Article  CAS  Google Scholar 

  48. Cohen, G.H. ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions. J. Appl. Crystallogr. 30, 1160–1161 (1997).

    Article  CAS  Google Scholar 

  49. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  50. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Evdokimov for the help with Gaussian 98a, E. Egelman and S. Khaitlina for the comments on the manuscript and E. Wise for the help in preparation of figures. We thank K. Suwanborirux for help in the collection of the sponges used in the purification of kabiramide C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerard Marriott or Ivan Rayment.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenchin, V., Allingham, J., King, R. et al. Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. Nat Struct Mol Biol 10, 1058–1063 (2003). https://doi.org/10.1038/nsb1006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing