Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural characterization of a proline-driven conformational switch within the Itk SH2 domain

Abstract

Interleukin-2 tyrosine kinase (Itk) is a T cell-specific kinase required for a proper immune response following T cell receptor engagement. In addition to the kinase domain, Itk is composed of several noncatalytic regulatory domains, including a Src homology 2 (SH2) domain that contains a conformationally heterogeneous Pro residue. Cis-trans isomerization of a single prolyl imide bond within the SH2 domain mediates conformer-specific ligand recognition that may have functional implications in T cell signaling. To better understand the mechanism by which a proline switch regulates ligand binding, we have used NMR spectroscopy to determine two structures of Itk SH2 corresponding to the cis and trans imide bond-containing conformers. The structures indicate that the heterogeneous Pro residue acts as a hinge that modulates ligand recognition by controlling the relative orientation of protein-binding surfaces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NMR structures of the cis and trans Itk SH2 conformers.
Figure 2: Structural differences between the cis and trans Itk SH2 domain provide a basis for conformer-specific binding to the Itk SH3 domain.
Figure 3: Hydrophobic packing involving residues in the CD loop of the cis SH2 structure provides stabilization energy.
Figure 4: Dynamic properties of the Itk SH2 domain correlate with chemical shift and structural differences between cis- and trans-containing conformers.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  2. Brazin, K.N., Mallis, R.J., Fulton, D.B. & Andreotti, A.H. Proc. Natl. Acad. Sci. USA 99, 1899–1904 (2002).

    Article  CAS  Google Scholar 

  3. Heyeck, S.D. & Berg, L.J. Proc. Natl. Acad. Sci. USA 90, 669–673 (1993).

    Article  CAS  Google Scholar 

  4. Siliciano, J.D., Morrow, T.A. & Desiderio, S.V. Proc. Natl. Acad. Sci. USA 89, 194–198 (1992).

    Article  Google Scholar 

  5. Yamada, N. et al. Biochem. Biophys. Res. Comm. 192, 231–240 (1993).

    Article  CAS  Google Scholar 

  6. Tsoukas, C.D., Grasis, J.A., Ching, K.A., Kawakami, Y. & Kawakami, T. Trends Immunol. 22, 17–20 (2001).

    Article  CAS  Google Scholar 

  7. Brazin, K.N., Fulton, D.B. & Andreotti, A.H. J. Mol. Biol. 302, 607–623 (2000).

    Article  CAS  Google Scholar 

  8. Pawson, T., Gish, G.D. & Nash, P. Trends Cell Biol. 11, 504–11 (2001).

    Article  CAS  Google Scholar 

  9. Eck, M.J., Shoelson, S.E. & Harrison, S.C. Nature 362, 87–91 (1993).

    Article  CAS  Google Scholar 

  10. Mayer, B.J. J. Cell Sci. 114, 1253–1263 (2001).

    CAS  Google Scholar 

  11. Andreotti, A.H., Bunnell, S.C., Feng, S., Berg, L.J. & Schreiber, S.L. Nature 385, 93–97 (1997).

    Article  CAS  Google Scholar 

  12. Lee, C.H., Saksela, K., Mirza, U.A., Chait, B.T. & Kuriyan, J. Cell 85, 931–942 (1996).

    Article  CAS  Google Scholar 

  13. Lim, W.A. Structure 4, 657–659 (1996).

    Article  CAS  Google Scholar 

  14. Gerstein, M., Lesk, A.M. & Chothia, C. Biochemistry 33, 6739–6749 (1994).

    Article  CAS  Google Scholar 

  15. Cheng, H.N. & Bovey, F.A. Biopolymers 16, 1465–1472 (1977).

    Article  CAS  Google Scholar 

  16. Fischer, G. Chem. Soc. Rev. 29, 119–127 (2000).

    Article  CAS  Google Scholar 

  17. Stewart, D.E., Sarkar, A. & Wampler, J.E. J. Mol. Biol. 214, 253–260 (1990).

    Article  CAS  Google Scholar 

  18. Mandel, A.M., Akke, M. & Palmer, A.G. III J. Mol. Biol. 246, 144–163 (1995).

    Article  CAS  Google Scholar 

  19. Yuan, X. et al. Protein Sci. 7, 2127–2135 (1998).

    Article  CAS  Google Scholar 

  20. Gitti, R.K. et al. Science 273, 231–235 (1996).

    Article  CAS  Google Scholar 

  21. Kordel, J., Forsen, S., Drakenberg, T. & Chazin, W.J. Biochemistry 29, 4400–4409 (1990).

    Article  CAS  Google Scholar 

  22. Bosco, D.A., Eisenmesser, E.Z., Pochapsky, S., Sundquist, W.I. & Kern, D. Proc. Natl. Acad. Sci. USA 99, 5247–5252 (2002).

    Article  CAS  Google Scholar 

  23. Muhandiram, D.R., Farrow, N.A., Xu, G., Smallcombe, S.H. & Kay, L.E. J. Magn. Reson. B 102, 317–321 (1993).

    Article  CAS  Google Scholar 

  24. Roberts, G.C.K. NMR of Macromolecules: A Practical Approach (Oxford University Press, Oxford; 1993),

    Google Scholar 

  25. Farrow, N.A. et al. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  26. Favier, A. et al. J. Mol. Biol. 317, 131–144 (2002).

    Article  CAS  Google Scholar 

  27. Johnson, B.A. & Blevins, R.A. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  28. Andersson, P., Gsell, B., Wipf, B., Senn, H. & Otting, G. J. Biomol. NMR 11, 279–288 (1998).

    Article  CAS  Google Scholar 

  29. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  30. Cornilescu, G., Delaglio, F. & Bax, A. J. Biomol. NMR. 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  31. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 29–32 (1996).

    Article  Google Scholar 

  32. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Science 266, 1241–1247 (1994).

    Article  CAS  Google Scholar 

  33. Mallis, R.J., Buss, J.E. & Thomas, J.A. Biochem. J. 355, 145–153 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Hargrove and E. Pletneva for critical review of the manuscript. We also thank J. Thomas for his generosity in the use of his laboratory and equipment for carrying out the isoelectric focusing gels. Support for this work was provided by a National Institutes of Health grant and a grant from the Roy J. Carver Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy H. Andreotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallis, R., Brazin, K., Fulton, D. et al. Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat Struct Mol Biol 9, 900–905 (2002). https://doi.org/10.1038/nsb864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing