Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster

An Addendum to this article was published on 01 January 2004

Abstract

We have solved the high-resolution crystal structures of the Drosophila melanogaster alcohol-binding protein LUSH in complex with a series of short-chain n-alcohols. LUSH is the first known nonenzyme protein with a defined in vivo alcohol-binding function. The structure of LUSH reveals a set of molecular interactions that define a specific alcohol-binding site. A group of amino acids, Thr57, Ser52 and Thr48, form a network of concerted hydrogen bonds between the protein and the alcohol that provides a structural motif to increase alcohol-binding affinity at this site. This motif seems to be conserved in a number of mammalian ligand-gated ion channels that are directly implicated in the pharmacological effects of alcohol. Further, these sequences are found in regions of ion channels that are known to confer alcohol sensitivity. We suggest that the alcohol-binding site in LUSH represents a general model for alcohol-binding sites in proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagrams of LUSH and PBP.
Figure 2: Structure of LUSH alcohol-binding pocket.
Figure 3: 1H-15N HSQC spectra of LUSH recorded with and without alcohol.
Figure 4: Comparison of the alcohol-binding site in LUSH with regions of alcohol-sensitive ion channels.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Faingold, C.L., N'Gouemo, P. & Riaz, A. Ethanol and neurotransmitter interactions—from molecular to integrative effects. Prog. Neurobiol. 55, 509–535 (1998).

    Article  CAS  Google Scholar 

  2. Mascia, M.P., Machu, T.K. & Harris, R.A. Enhancement of homomeric glycine receptor function by long-chain alcohols and anaesthetics. Br. J. Pharmacol. 119, 1331–1336 (1996).

    Article  CAS  Google Scholar 

  3. Ikonomidou, C. et al. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287, 1056–1060 (2000).

    Article  CAS  Google Scholar 

  4. Lovinger, D.M. Alcohols and neurotransmitter gated ion channels: past, present and future. Naunyn Schmiedebergs Arch. Pharmacol. 356, 267–282 (1997).

    Article  CAS  Google Scholar 

  5. Harris, R.A. Ethanol actions on multiple ion channels: which are important? Alcohol Clin. Exp. Res. 23, 1563–1570 (1999).

    CAS  PubMed  Google Scholar 

  6. Mihic, S.J. et al. Sites of alcohol and volatile anesthetic action on GABA(A) and glycine receptors. Nature 389, 385–389 (1997).

    Article  CAS  Google Scholar 

  7. Ye, Q. et al. Enhancement of glycine receptor function by ethanol is inversely correlated with molecular volume at position α 267. J. Biol. Chem. 273, 3314–3319 (1998).

    Article  CAS  Google Scholar 

  8. Ueno, S., Wick, M.J., Ye, Q., Harrison, N.L. & Harris, R.A. Subunit mutations affect ethanol actions on GABA(A) receptors expressed in Xenopus oocytes. Br. J. Pharmacol. 127, 377–382 (1999).

    Article  CAS  Google Scholar 

  9. Wick, M. et al. Mutations of γ-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc. Natl. Acad. Sci. USA 95, 6504–6509 (1998).

    Article  CAS  Google Scholar 

  10. Woodward, J.J. Ionotropic glutamate receptors as sites of action for ethanol in the brain. Neurochem. Int. 35, 107–113 (1999).

    Article  CAS  Google Scholar 

  11. Krasowski, M.D. et al. Propofol and other intravenous anesthetics have sites of action on the γ-aminobutyric acid type a receptor distinct from that for isoflurane. Mol. Pharmacol. 53, 530–538 (1998).

    Article  CAS  Google Scholar 

  12. Kash, T.L., Jenkins, A. & Harrison, N.L. Molecular volume determines the activity of the halogenated alkane bromoform at wild-type and mutant GABA(A) receptors. Brain Res. 960, 36–41 (2003).

    Article  CAS  Google Scholar 

  13. Jenkins, A. et al. Evidence for a common binding cavity for three general anesthetics within the GABA(A) receptor. J. Neurosci. 21, U7–U10 (2001).

    Article  Google Scholar 

  14. Li, C.M., Heatwole, J., Soelaiman, S. & Shoham, M. Crystal structure of a thermophilic alcohol dehydrogenase substrate complex suggests determinants of substrate specificity and thermostability. Proteins 37, 619–627 (1999).

    Article  CAS  Google Scholar 

  15. Benach, J., Atrian, S., Gonzalez-Duarte, R. & Ladenstein, R. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 Å resolution. J. Mol. Biol. 282, 383–399 (1998).

    Article  CAS  Google Scholar 

  16. Xie, P., Parsons, S.H., Speckhard, D.C., Bosron, W.F. & Hurley, T.D. X-ray structure of human class IV σσ alcohol dehydrogenase. Structural basis for substrate specificity. J. Biol. Chem. 272, 18558–18563 (1997).

    Article  CAS  Google Scholar 

  17. Niederhut, M.S., Gibbons, B.J., Perez-Miller, S. & Hurley, T.D. Three-dimensional structures of the three human class I alcohol dehydrogenases. Protein Sci. 10, 697–706 (2001).

    Article  CAS  Google Scholar 

  18. Dwyer, D.S. & Bradley, R.J. Chemical properties of alcohols and their protein binding sites. Cell. Mol. Life Sci. 57, 265–275 (2000).

    Article  CAS  Google Scholar 

  19. Eckenhoff, R.G. & Johansson, J.S. Molecular interactions between inhaled anesthetics and proteins. Pharmacol. Rev. 49, 343–367 (1997).

    CAS  PubMed  Google Scholar 

  20. Franks, N.P., Jenkins, A., Conti, E., Lieb, W.R. & Brick, P. Structural basis for the inhibition of firefly luciferase by a general anesthetic. Biophys. J. 75, 2205–2211 (1998).

    Article  CAS  Google Scholar 

  21. Ishizawa, Y., Pidikiti, R., Liebman, P.A. & Eckenhoff, R.G. G protein-coupled receptors as direct targets of inhaled anesthetics. Mol. Pharmacol. 61, 945–952 (2002).

    Article  CAS  Google Scholar 

  22. Johansson, J.S., Scharf, D., Davies, L.A., Reddy, K.S. & Eckenhoff, R.G. A designed four-α-helix bundle that binds the volatile general anesthetic halothane with high affinity. Biophys. J. 78, 982–993 (2000).

    Article  CAS  Google Scholar 

  23. Sachsenheimer, W., Pai, E.F., Schulz, G.E. & Schirmer, R.H. Halothane binds in adenine-specific niche of crystalline adenylate kinase. FEBS Lett. 79, 310–312 (1977).

    Article  CAS  Google Scholar 

  24. Vogt, R.G. & Riddiford, L.M. Pheromone binding and inactivation by moth antennae. Nature 293, 161–163 (1981).

    Article  CAS  Google Scholar 

  25. Campanacci, V. et al. Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proc. Natl. Acad. Sci. USA 100, 5069–5074 (2003).

    Article  CAS  Google Scholar 

  26. Mosbah, A. et al. Solution structure of a chemosensory protein from the moth Mamestra brassicae. Biochem. J. 369, 39–44 (2003).

    Article  CAS  Google Scholar 

  27. Kim, M.-S., Repp, A. & Smith, D.P. LUSH Odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150, 711–721 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Du, G. & Prestwich, G.D. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34, 8726–8732 (1995).

    Article  CAS  Google Scholar 

  29. Sandler, B.H., Nikonova, L., Leal, W.S. & Clardy, J. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol. 7, 143–151 (2000).

    Article  CAS  Google Scholar 

  30. Laurence, C. & Berthelot, M. Observations on the strength of hydrogen bonding. Perspect. Drug Discov. Design 18, 39–60 (2000).

    Article  CAS  Google Scholar 

  31. Lee, D. et al. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett. 531, 314–318 (2002).

    Article  CAS  Google Scholar 

  32. Rothemund, S., Liou, Y.C., Davies, P.L., Krause, E. & Sonnichsen, F.D. A new class of hexahelical insect proteins revealed as putative carriers of small hydrophobic ligands. Struct. Fold. Des. 7, 1325–1332 (1999).

    Article  CAS  Google Scholar 

  33. Horst, R. et al. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. USA 98, 14374–14379 (2001).

    Article  CAS  Google Scholar 

  34. Prestwich, G.D. Bacterial expression and photoaffinity labeling of a pheromone binding protein. Protein Sci. 2, 420–428 (1993).

    Article  CAS  Google Scholar 

  35. Mascia, M.P., Trudell, J.R. & Harris, R.A. Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. Proc. Natl. Acad. Sci. USA 97, 9305–9310 (2000).

    Article  CAS  Google Scholar 

  36. Yamakura, T., Bertaccini, E., Trudell, J.R. & Harris, R.A. Anesthetics and ion channels: molecular models and sites of action. Annu. Rev. Pharmacol. Toxicol. 41, 23–51 (2001).

    Article  CAS  Google Scholar 

  37. Bertaccini, E. & Trudell, J.R. Molecular modeling of ligand-gated ion channels: progress and challenges. Int. Rev. Neurobiol. 48, 141–166 (2001).

    Article  CAS  Google Scholar 

  38. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).

    Article  CAS  Google Scholar 

  39. Covarrubias, M., Vyas, T.B., Escobar, L. & Wei, A. Alcohols inhibit a cloned potassium channel at a discrete saturable site. Insights into the molecular basis of general anesthesia. J. Biol. Chem. 270, 19408–19416 (1995).

    Article  CAS  Google Scholar 

  40. Borghese, C.M., Ali, D.N., Bleck, V. & Harris, R.A. Acetylcholine and alcohol sensitivity of neuronal nicotinic acetylcholine receptors: mutations in transmembrane domains. Alcohol Clin. Exp. Res. 26, 1764–1772 (2002).

    Article  CAS  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  42. Terwilliger, T.C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  43. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  44. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  45. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  46. Laskowski, R.A. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  47. Bodenhausen, G. & Ruben, D.J. Natural abundance N-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).

    Article  CAS  Google Scholar 

  48. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  49. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  50. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Churchill for invaluable advice on crystallography studies and H. Robinson for MAD data collection at Brookhaven National Laboratory. X-ray crystallography facilities and NMR spectrometers were purchased with funds provided by Howard Hughes Medical Institute and their operation is supported by the University of Colorado Cancer Center Core Grant. S.W.K. is supported by an American Heart Association Predoctoral Fellowship. This work is supported by an American Heart Association Development Grant and a grant from the US National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism to D.N.M.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N M Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, S., Zhao, R., Smith, D. et al. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Mol Biol 10, 694–700 (2003). https://doi.org/10.1038/nsb960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing