Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phylogenomics of the nucleosome

Abstract

Histones are best known as the architectural proteins that package the DNA of eukaryotic organisms, forming octameric nucleosome cores that the double helix wraps tightly around. Although histones have traditionally been viewed as slowly evolving scaffold proteins that lack diversification beyond their abundant tail modifications, recent studies have revealed that variant histones have evolved for diverse functions. H2A and H3 variants have diversified to assume roles in epigenetic silencing, gene expression and centromere function. Such diversification of histone variants and 'deviants' contradicts the perception of histones as monotonous members of multigene families that indiscriminately package and compact the genome. How these diverse functions have evolved from ancestral forms can be addressed by applying phylogenetic tools to increasingly abundant sequence data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Archaeal histones.
Figure 2: Archaeal to eukaryotic histones.
Figure 3: Canonical H3 histones and the H3.3 variant.
Figure 4: Centromeric H3 variants.
Figure 5: H4 histones.
Figure 6: Canonical H2A and variants.
Figure 7: H2B histones.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sandman, K. et al. HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proc. Natl. Acad. Sci. USA 87, 5788–5791 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sandman, K., Pereira, S.L. & Reeve, J.N. Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome. Cell. Mol. Life Sci. 54, 1350–1364 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Pereira, S.L. et al. Archaeal nucleosomes. Proc. Natl. Acad. Sci. USA 94, 12633–12637 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Musgrave, D.R., Sandman, K.M. & Reeve, J.N. DNA binding by the archaeal histone HMf results in positive supercoiling. Proc. Natl. Acad. Sci. USA 88, 10397–10401 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sandman, K. et al. Growth-phase-dependent synthesis of histones in the archaeon Methanothermus fervidus. Proc. Natl. Acad. Sci. USA 91, 12624–12628 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Slesarev, A.I. et al. Evidence for an early prokaryotic origin of histones H2A and H4 prior to the emergence of eukaryotes. Nucleic Acids Res. 26, 427–430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ng, W.V. et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97, 12176–12181 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fahrner, R.L. et al. An ancestral nuclear protein assembly: crystal structure of the Methanopyrus kandleri histone. Protein Sci. 10, 2002–2007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Decanniere, K. et al. Crystal structures of recombinant histones HMfA and HMfB from the hyperthermophilic archaeon Methanothermus fervidus. J. Mol. Biol. 303, 35–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Luger, K. et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Arents, G. et al. The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88, 10148–10152 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ouzounis, C.A. & Kyrpides, N.C. Parallel origins of the nucleosome core and eukaryotic transcription from Archaea. J. Mol. Evol. 42, 234–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Eickbush, T.H. & Moudrianakis, E.N. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry 17, 4955–4964 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Fischle, W., Wang, Y. & Allis, C.D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, R.S., Tsai, S. & Bonner, W.M. Patterns of histone variant synthesis can distinguish G0 from G1 cells. Cell 31, 367–374 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Bosch, A. & Suau, P. Changes in core histone variant composition in differentiating neurons: the roles of differential turnover and synthesis rates. Eur. J. Cell Biol. 68, 220–225 (1995).

    CAS  PubMed  Google Scholar 

  17. Thatcher, T.H. et al. Independent evolutionary origin of histone H3.3-like variants of animals and Tetrahymena. Nucleic Acids Res. 22, 180–186 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waterborg, J.H. & Robertson, A.J. Common features of analogous replacement histone H3 genes in animals and plants. J. Mol. Evol. 43, 194–206 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, L. & Gorovsky, M.A. Constitutive expression, not a particular primary sequence, is the important feature of the H3 replacement variant hv2 in Tetrahymena thermophila. Mol. Cell. Biol. 17, 6303–6310 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ausio, J. Histone H1 and evolution of sperm nuclear basic proteins. J. Biol. Chem. 274, 31115–31118 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Hennig, W. Chromosomal proteins in the spermatogenesis of Drosophila. Chromosoma 111, 489–494 (2003).

    Article  PubMed  Google Scholar 

  23. Palmer, D.K. et al. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104, 805–815 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Palmer, D.K. et al. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl. Acad. Sci. USA 88, 3734–3738 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henikoff, S., Ahmad, K. & Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Malik, H.S., Vermaak, D. & Henikoff, S. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc. Natl. Acad. Sci. USA 99, 1449–1454 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marzluff, W.F. et al. The human and mouse replication-dependent histone genes. Genomics 80, 487–498 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Stoler, S. et al. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Buchwitz, B.J. et al. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Henikoff, S. et al. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97, 716–721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahashi, K., Chen, E.S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Talbert, P.B. et al. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14, 1053–1066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shelby, R.D., Vafa, O. & Sullivan, K.F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136, 501–513 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vermaak, D., Hayden, H.S. & Henikoff, S. Centromere targeting element within the histone fold domain of Cid. Mol. Cell. Biol. 22, 7553–7561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Malik, H.S. & Henikoff, S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157, 1293–1298 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Y. et al. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell. Biol. 20, 7037–7048 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keeling, P.J., Luker, M.A. & Palmer, J.D. Evidence from β-tubulin phylogeny that microsporidia evolved from within the fungi. Mol. Biol. Evol. 17, 23–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Ueda, K. et al. Unusual core histones specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma 108, 491–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Jahn, C.L. et al. An unusual histone H3 specific for early macronuclear development in Euplotes crassus. Proc. Natl. Acad. Sci. USA 94, 1332–1337 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Douglas, S. et al. The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091–1096 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Suto, R.K. et al. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. West, M.H. & Bonner, W.M. Histone 2A, a heteromorphous family of eight protein species. Biochemistry 19, 3238–3245 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. Pehrson, J.R. & Fried, V.A. MacroH2A, a core histone containing a large nonhistone region. Science 257, 1398–1400 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Chadwick, B.P. & Willard, H.F. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J. Cell Biol. 152, 375–384 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rogakou, E.P. et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, H.T. et al. Response to RAG-mediated VDJ cleavage by NBS1 and γ-H2AX. Science 290, 1962–1965 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mahadevaiah, S.K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat. Genet. 27, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Rogakou, E.P. et al. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J. Biol. Chem. 275, 9390–9395 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 5, 675–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Rogakou, E.P. et al. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thatcher, T.H. & Gorovsky, M.A. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res. 22, 174–179 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, G.L., Hasson, M. & Blackburn, E.H. Circular ribosomal DNA plasmids transform Tetrahymena thermophila by homologous recombination with endogenous macronuclear ribosomal DNA. Proc. Natl. Acad. Sci. USA 85, 5151–5155 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4, 497–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Allis, C.D. et al. hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J. Biol. Chem. 261, 1941–1948 (1986).

    CAS  PubMed  Google Scholar 

  55. Jackson, J.D. & Gorovsky, M.A. Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants. Nucleic Acids Res. 28, 3811–3816 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stargell, L.A. et al. Temporal and spatial association of histone H2A variant hv1 with transcriptionally competent chromatin during nuclear development in Tetrahymena thermophila. Genes Dev. 7, 2641–2651 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Meneghini, M.D., Wu, M. & Madhani, H.D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Madigan, J.P., Chotkowski, H.L. & Glaser, R.L. DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res. 30, 3698–3705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Clarkson, M.J. et al. Regions of variant histone His2AvD required for Drosophila development. Nature 399, 694–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Fan, J.Y. et al. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat. Struct. Biol. 9, 172–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Santisteban, M.S., Kalashnikova, T. & Smith, M.M. Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 103, 411–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Costanzi, C. & Pehrson, J.R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393, 599–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Richler, C., Dhara, S.K. & Wahrman, J. Histone macroH2A1.2 is concentrated in the XY compartment of mammalian male meiotic nuclei. Cyt. Cell. Genet. 89, 118–120 (2000).

    Article  CAS  Google Scholar 

  64. Costanzi, C. & Pehrson, J.R. MACROH2A2, a new member of the MARCOH2A core histone family. J. Biol. Chem. 276, 21776–21784 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Ellegren, H. Dosage compensation: do birds do it as well? Trends Genet. 18, 25–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Pehrson, J.R. & Fuji, R.N. Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res. 26, 2837–2842 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martzen, M.R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Angelov, D. et al. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol. Cell 11, 1033–1041 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Aul, R.B. & Oko, R.J. The major subacrosomal occupant of bull spermatozoa is a novel histone H2B variant associated with the forming acrosome during spermiogenesis. Dev. Biol. 242, 376–387 (2002).

    Article  PubMed  Google Scholar 

  70. Wolffe, A.P. Centromeric chromatin. Histone deviants. Curr. Biol. 5, 452–454 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Henikoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, H., Henikoff, S. Phylogenomics of the nucleosome. Nat Struct Mol Biol 10, 882–891 (2003). https://doi.org/10.1038/nsb996

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing