Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into human KAP1 PHD finger–bromodomain and its role in gene silencing

Abstract

The tandem PHD finger–bromodomain, found in many chromatin-associated proteins, has an important role in gene silencing by the human co-repressor KRAB-associated protein 1 (KAP1). Here we report the three-dimensional solution structure of the tandem PHD finger–bromodomain of KAP1. The structure reveals a distinct scaffold unifying the two protein modules, in which the first helix, αZ, of an atypical bromodomain forms the central hydrophobic core that anchors the other three helices of the bromodomain on one side and the zinc binding PHD finger on the other. A comprehensive mutation-based structure-function analysis correlating transcriptional repression, ubiquitin-conjugating enzyme 9 (UBC9) binding and SUMOylation shows that the PHD finger and the bromodomain of KAP1 cooperate as one functional unit to facilitate lysine SUMOylation, which is required for KAP1 co-repressor activity in gene silencing. These results demonstrate a previously unknown unified function for the tandem PHD finger–bromodomain as an intramolecular small ubiquitin-like modifier (SUMO) E3 ligase for transcriptional silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the tandem PHD finger–bromodomain of human KAP1.
Figure 2: Interdomain interactions in tandem-domain motifs.
Figure 3: Structural features of the bromodomain and the PHD finger of KAP1.
Figure 4: Human KAP1 PHD finger–bromodomain acts as one functional unit in SUMOylation and transcriptional repression.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Fischle, W., Wang, Y. & Allis, C.D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003).

    Article  CAS  Google Scholar 

  2. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  3. Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  Google Scholar 

  4. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  5. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  6. Turner, B.M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  Google Scholar 

  7. Berger, J. & Bird, A. Role of MBD2 in gene regulation and tumorigenesis. Biochem. Soc. Trans. 33, 1537–1540 (2005).

    Article  CAS  Google Scholar 

  8. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  Google Scholar 

  9. Jacobson, R.H., Ladurner, A.G., King, D.S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  Google Scholar 

  10. Mujtaba, S., Zeng, L. & Zhou, M.M. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26, 5521–5527 (2007).

    Article  CAS  Google Scholar 

  11. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  Google Scholar 

  12. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  13. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).

    Article  CAS  Google Scholar 

  14. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 1058–1061 (2006).

    Article  CAS  Google Scholar 

  15. Peña, P.V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006).

    Article  Google Scholar 

  16. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  17. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722 (2007).

    Article  CAS  Google Scholar 

  18. Matthews, A.G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1111 (2007).

    Article  CAS  Google Scholar 

  19. Ramón-Maiques, S. et al. The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc. Natl. Acad. Sci. USA 104, 18993–18998 (2007).

    Article  Google Scholar 

  20. Dey, A., Chitsaz, F., Abbasi, A., Misteli, T. & Ozato, K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc. Natl. Acad. Sci. USA 100, 8758–8763 (2003).

    Article  CAS  Google Scholar 

  21. Kanno, T. et al. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell 13, 33–43 (2004).

    Article  CAS  Google Scholar 

  22. Vandemark, A.P. et al. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol. Cell 27, 817–828 (2007).

    Article  CAS  Google Scholar 

  23. Flanagan, J.F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    Article  CAS  Google Scholar 

  24. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748–751 (2006).

    Article  CAS  Google Scholar 

  25. Yap, K.L. & Zhou, M.M. Structure and function of protein modules in chromatin biology. Results Probl. Cell Differ. 41, 1–23 (2006).

    Article  CAS  Google Scholar 

  26. Ruthenburg, A.J., Li, H., Patel, D.J. & Allis, C.D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  Google Scholar 

  27. Ragvin, A. et al. Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J. Mol. Biol. 337, 773–788 (2004).

    Article  CAS  Google Scholar 

  28. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    Article  CAS  Google Scholar 

  29. Kitagawa, H. et al. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113, 905–917 (2003).

    Article  CAS  Google Scholar 

  30. Venturini, L. et al. TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. Oncogene 18, 1209–1217 (1999).

    Article  CAS  Google Scholar 

  31. Bloch, D.B., de la Monte, S.M., Guigaouri, P., Filippov, A. & Bloch, K.D. Identification and characterization of a leukocyte-specific component of the nuclear body. J. Biol. Chem. 271, 29198–29204 (1996).

    Article  CAS  Google Scholar 

  32. Capili, A.D., Schultz, D.C., Rauscher, F.J. III & Borden, K.L. Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J. 20, 165–177 (2001).

    Article  CAS  Google Scholar 

  33. Ivanov, A.V. et al. PHD Domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823–837 (2007).

    Article  CAS  Google Scholar 

  34. Abrink, M. et al. Conserved interaction between distinct Kruppel-associated box domains and the transcriptional intermediary factor 1 β. Proc. Natl. Acad. Sci. USA 98, 1422–1426 (2001).

    CAS  PubMed  Google Scholar 

  35. Friedman, J.R. et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10, 2067–2078 (1996).

    Article  CAS  Google Scholar 

  36. Le Douarin, B. et al. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15, 6701–6715 (1996).

    Article  CAS  Google Scholar 

  37. Clore, G.M. & Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).

    Article  CAS  Google Scholar 

  38. Gozani, O. et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111 (2003).

    Article  CAS  Google Scholar 

  39. Capili, A.D. & Lima, C.D. Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Curr. Opin. Struct. Biol. 17, 726–735 (2007).

    Article  CAS  Google Scholar 

  40. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).

    Article  CAS  Google Scholar 

  41. Mascle, X.H., Germain-Desprez, D., Huynh, P., Estephan, P. & Aubry, M. Sumoylation of the transcriptional intermediary factor 1β (TIF1β), the co-repressor of the KRAB multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain. J. Biol. Chem. 282, 10190–10202 (2007).

    Article  CAS  Google Scholar 

  42. Li, X. et al. Role for KAP1 serine 824 phosphorylation and SUMOylation/deSUMOylation switch in regulating KAP1-mediated transcriptional repression. J. Biol. Chem. 282, 36177–36189 (2007).

    Article  CAS  Google Scholar 

  43. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 8, 870–876 (2006).

    Article  CAS  Google Scholar 

  44. Lin, D.Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354 (2006).

    Article  CAS  Google Scholar 

  45. Yurchenko, V., Xue, Z. & Sadofsky, M.J. SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol. Cell. Biol. 26, 1786–1794 (2006).

    Article  CAS  Google Scholar 

  46. Klenova, E., Chernukhin, I., Inoue, T., Shamsuddin, S. & Norton, J. Immunoprecipitation techniques for the analysis of transcription factor complexes. Methods 26, 254–259 (2002).

    Article  CAS  Google Scholar 

  47. Wang, C. et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 24, 3279–3290 (2005).

    Article  CAS  Google Scholar 

  48. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  49. Nilges, M. & O'Donoghue, S. Ambiguous NOEs and automated NOE assignment. Prog. Nucl. Magn. Reson. Spectrosc. 32, 107–139 (1998).

    Article  CAS  Google Scholar 

  50. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the use of the NMR facilities at the New York Structural Biology Center for this study. K.L.Y. was supported by a Terry Fox Foundation postdoctoral fellowship from the National Cancer Institute of Canada. F.J.R. was supported by grants from the US National Institutes of Health (CA095561 and CA092088), The Samuel Waxman Cancer Research Foundation, The Pardee Foundation and The Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health. M.-M.Z. was in part supported by funds from the Dr. Golden and Harold Lamport Chair, and grants from the US National Institutes of Health (CA087658) and the US National Science Foundation (#0517352).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. determined the protein structure by NMR, K.L.Y. characterized the protein structure-function by NMR; A.V.I. performed in vitro SUMOylation and transcription repression studies; X.W., S.M., and O.P. contributed to molecular cloning, protein purification and characterization of the study. The project was directed by M.-M.Z. and F.J.R. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Ming-Ming Zhou.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 5082 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, L., Yap, K., Ivanov, A. et al. Structural insights into human KAP1 PHD finger–bromodomain and its role in gene silencing. Nat Struct Mol Biol 15, 626–633 (2008). https://doi.org/10.1038/nsmb.1416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing