Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2

Abstract

Nipah and Hendra viruses are emergent paramyxoviruses, causing disease characterized by rapid onset and high mortality rates, resulting in their classification as Biosafety Level 4 pathogens. Their attachment glycoproteins are essential for the recognition of the cell-surface receptors ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3). Here we report crystal structures of both Nipah and Hendra attachment glycoproteins in complex with human EFNB2. In contrast to previously solved paramyxovirus attachment complexes, which are mediated by sialic acid interactions, the Nipah and Hendra complexes are maintained by an extensive protein-protein interface, including a crucial phenylalanine side chain on EFNB2 that fits snugly into a hydrophobic pocket on the viral protein. By analogy with the development of antivirals against sialic acid binding viruses, these results provide a structural template to target antiviral inhibition of protein-protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NiV-G−EFNB2 and HeV-G−EFNB2 complex structures.
Figure 2: Comparison of protein-protein and protein-sugar interactions required for paramyxovirus attachment and fusion.
Figure 3: Conformational changes that occur to the EFNB2 G-H loop upon receptor binding.
Figure 4: Points of molecular specificity in the HNV-G−EFNB2 interaction.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Eaton, B.T., Broder, C.C., Middleton, D. & Wang, L.F. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol. 4, 23–35 (2006).

    Article  CAS  Google Scholar 

  2. Parashar, U.D. et al. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J. Infect. Dis. 181, 1755–1759 (2000).

    Article  CAS  Google Scholar 

  3. Selvey, L.A. et al. Infection of humans and horses by a newly described morbillivirus. Med. J. Aust. 162, 642–645 (1995).

    Article  CAS  Google Scholar 

  4. Murray, K. et al. A morbillivirus that caused fatal disease in horses and humans. Science 268, 94–97 (1995).

    Article  CAS  Google Scholar 

  5. Hsu, V.P. et al. Nipah virus encephalitis reemergence, Bangladesh. Emerg. Infect. Dis. 10, 2082–2087 (2004).

    Article  Google Scholar 

  6. Mohd Nor, M.N., Gan, C.H. & Ong, B.L. Nipah virus infection of pigs in peninsular Malaysia. Rev. Sci. Tech. 19, 160–165 (2000).

    Article  CAS  Google Scholar 

  7. Guillaume, V. et al. Nipah virus: vaccination and passive protection studies in a hamster model. J. Virol. 78, 834–840 (2004).

    Article  CAS  Google Scholar 

  8. Guillaume, V. et al. Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J. Virol. 80, 1972–1978 (2006).

    Article  CAS  Google Scholar 

  9. Bossart, K.N. & Broder, C.C. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev. Anti Infect. Ther. 4, 43–55 (2006).

    Article  CAS  Google Scholar 

  10. Negrete, O.A. et al. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436, 401–405 (2005).

    Article  CAS  Google Scholar 

  11. Negrete, O.A. et al. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog. 2, e7 (2006).

    Article  Google Scholar 

  12. Bonaparte, M.I. et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl. Acad. Sci. USA 102, 10652–10657 (2005).

    Article  CAS  Google Scholar 

  13. Wilkinson, D.G. Multiple roles of EPH receptors and ephrins in neural development. Nat. Rev. Neurosci. 2, 155–164 (2001).

    Article  CAS  Google Scholar 

  14. Himanen, J.P. et al. Crystal structure of an Eph receptor-ephrin complex. Nature 414, 933–938 (2001).

    Article  CAS  Google Scholar 

  15. Himanen, J.P. et al. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat. Neurosci. 7, 501–509 (2004).

    Article  CAS  Google Scholar 

  16. Chrencik, J.E. et al. Structure and thermodynamic characterization of the EphB4/Ephrin-B2 antagonist peptide complex reveals the determinants for receptor specificity. Structure 14, 321–330 (2006).

    Article  CAS  Google Scholar 

  17. Chrencik, J.E. et al. Structural and biophysical characterization of the EphB4-ephrinB2 protein-protein interaction and receptor specificity. J. Biol. Chem. 281, 28185–28192 (2006).

    Article  CAS  Google Scholar 

  18. Chrencik, J.E. et al. Three dimensional structure of the EPHB2 receptor in complex with an antagonistic peptide reveals a novel mode of inhibition. J. Biol. Chem. 282, 36505–36513 (2007).

    Article  CAS  Google Scholar 

  19. Lawrence, M.C. et al. Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. J. Mol. Biol. 335, 1343–1357 (2004).

    Article  CAS  Google Scholar 

  20. Crennell, S., Takimoto, T., Portner, A. & Taylor, G. Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat. Struct. Biol. 7, 1068–1074 (2000).

    Article  CAS  Google Scholar 

  21. Yuan, P. et al. Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure 13, 803–815 (2005).

    Article  CAS  Google Scholar 

  22. Bishop, K.A. et al. Identification of Hendra virus g glycoprotein residues that are critical for receptor binding. J. Virol. 81, 5893–5901 (2007).

    Article  CAS  Google Scholar 

  23. Guillaume, V. et al. Evidence of a potential receptor-binding site on the Nipah virus G protein (NiV-G): identification of globular head residues with a role in fusion promotion and their localization on an NiV-G structural model. J. Virol. 80, 7546–7554 (2006).

    Article  CAS  Google Scholar 

  24. Negrete, O.A., Chu, D., Aguilar, H.C. & Lee, B. Single amino acid changes in the Nipah and Hendra virus attachment glycoprotein distinguishes ephrinB2 from ephrinB3 usage. J. Virol. 81, 10804–10814 (2007).

    Article  CAS  Google Scholar 

  25. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  Google Scholar 

  26. Chang, V.T. et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure 15, 267–273 (2007).

    Article  CAS  Google Scholar 

  27. Hashiguchi, T. et al. Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc. Natl. Acad. Sci. USA 104, 19535–19540 (2007).

    Article  CAS  Google Scholar 

  28. Colf, L.A., Juo, Z.S. & Garcia, K.C. Structure of the measles virus hemagglutinin. Nat. Struct. Mol. Biol. 14, 1227–1228 (2007).

    Article  CAS  Google Scholar 

  29. Santiago, C., Bjorling, E., Stehle, T. & Casasnovas, J.M. Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J. Biol. Chem. 277, 32294–32301 (2002).

    Article  CAS  Google Scholar 

  30. Toth, J. et al. Crystal structure of an ephrin ectodomain. Dev. Cell 1, 83–92 (2001).

    Article  CAS  Google Scholar 

  31. Stuart, D.I., Levine, M., Muirhead, H. & Stammers, D.K. Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6. J. Mol. Biol. 134, 109–142 (1979).

    Article  CAS  Google Scholar 

  32. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  33. Bossart, K.N. et al. Functional studies of host-specific ephrin-B ligands as Henipavirus receptors. Virology 372, 357–371 (2008).

    Article  CAS  Google Scholar 

  34. Pabbisetty, K.B. et al. Kinetic analysis of the binding of monomeric and dimeric ephrins to Eph receptors: correlation to function in a growth cone collapse assay. Protein Sci. 16, 355–361 (2007).

    Article  CAS  Google Scholar 

  35. Li, W. et al. Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob. Agents Chemother. 42, 647–653 (1998).

    Article  CAS  Google Scholar 

  36. Altamirano, M.M. et al. Ligand-independent assembly of recombinant human CD1 by using oxidative refolding chromatography. Proc. Natl. Acad. Sci. USA 98, 3288–3293 (2001).

    Article  CAS  Google Scholar 

  37. Walter, T.S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallogr. D Biol. Crystallogr. 61, 651–657 (2005).

    Article  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  39. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  40. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  41. Perrakis, A., Harkiolaki, M., Wilson, K.S. & Lamzin, V.S. ARP/wARP and molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 57, 1445–1450 (2001).

    Article  CAS  Google Scholar 

  42. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  43. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  44. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  45. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  46. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  47. Hooft, R.W., Vriend, G., Sander, C. & Abola, E.E. Errors in protein structures. Nature 381, 272 (1996).

    Article  CAS  Google Scholar 

  48. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  49. Aricescu, A.R. et al. Molecular analysis of receptor protein tyrosine phosphatase μ-mediated cell adhesion. EMBO J. 25, 701–712 (2006).

    Article  CAS  Google Scholar 

  50. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  51. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  Google Scholar 

  52. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the help of W. Lu in tissue culture, K. Harlos for data collection, C. O'Callaghan for discussions and the staff of beamlines ID14.2 and ID23.1 at the European Synchotron Radiation Facility for assistance. This work was funded by the Wellcome Trust, Medical Research Council, Royal Society, Cancer Research UK and Spine2 Complexes (FP6-RTD-031220).

Author information

Authors and Affiliations

Authors

Contributions

T.A.B., A.R.A., J.M.G., E.Y.J. and D.I.S. contributed to the design of the project and preparation of the manuscript; T.A.B. was responsible for Kd determination. T.A.B. and A.R.A. were responsible for cloning and construct design; T.A.B. expressed, purified and crystallized the HNV-G complexes; T.A.B., J.M.G. and D.I.S. contributed to X-ray data collection and solving the structure of NiV-G−EFNB2 and HeV-G−EFNB2; T.A.B. and R.J.C.G. performed AUC analysis of NiV-G.

Corresponding author

Correspondence to David I Stuart.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 1383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowden, T., Aricescu, A., Gilbert, R. et al. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 15, 567–572 (2008). https://doi.org/10.1038/nsmb.1435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing