Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membrane fusion

Abstract

Subcellular compartmentalization, cell growth, hormone secretion and neurotransmission require rapid, targeted, and regulated membrane fusion. Fusion entails extensive lipid rearrangements by two apposed (docked) membrane vesicles, joining their membrane proteins and lipids and mixing their luminal contents without lysis. Fusion of membranes in the secretory pathway involves Rab GTPases; their bound 'effector' proteins, which mediate downstream steps; SNARE proteins, which can 'snare' each other, in cis (bound to one membrane) or in trans (anchored to apposed membranes); and SNARE-associated proteins (SM proteins; NSF or Sec18p; SNAP or Sec17p; and others) cooperating with specific lipids to catalyze fusion. In contrast, mitochondrial and cell-cell fusion events are regulated by and use distinct catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane fusion on the exocytic and endocytic pathways, in five steps.
Figure 2: Mitochondrial fusion and cell fusion in mating yeast cells.

Similar content being viewed by others

References

  1. Chernomordik, L.V. & Kozlov, M.M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Malinin, V.S., Frederik, P. & Lentz, B.R. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophys. J. 82, 2090–2100 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siegel, D.P. et al. Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases. Biochemistry 38, 3703–3709 (1989).

    Article  Google Scholar 

  4. Burgess, S.W., McIntosh, T.J. & Lentz, B.R. Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. Biochemistry 31, 2653–2661 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, J. & Lentz, B.R. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 36, 6251–6259 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chernomordik, L.V., Frolov, V.A., Leikina, E., Bronk, P. & Zimmerberg, J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 140, 1369–1382 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melikyan, G.B., Brener, S.A., Cok, D. & Cohen, F.S. Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J. Cell Biol. 136, 995–1005 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wharton, S.A., Martin, S.R., Ruigrok, R.W.H., Skehel, J.J. & Wiley, D.C. Membrane fusion by peptide analogues of influenza haemagglutinin. J. Gen. Virol. 69, 1847–1857 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Frolov, V.A., Dunina-Barkovskaya, A.Y., Samsonov, A.V. & Zimmerberg, J. Membrane permeability changes at early stages of Influenza hemagglutinin-mediated fusion. Biophys. J. 85, 1725–1733 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skehel, J.J. & Wiley, D.C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Beisson, J., Lefort-Tran, M., Pouphile, M., Rossignol, M. & Satir, B. Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J. Cell Biol. 69, 126–143 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Novick, P. & Schekman, R. Secretion and cell-surface growth are blocked in a temperature sensitive mutant of Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 76, 1858–1862 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Kaiser, C.A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723–733 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Fries, E. & Rothman, J.E. Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc. Natl. Acad. Sci. USA 77, 3870–3874 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baker, D., Hicke, L., Rexach, M., Schleyer, M. & Schekman, R. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell 54, 335–344 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Rothman, J.H. & Stevens, T.H. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47, 1041–1051 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Banta, L.M., Robinson, J.S., Klionsky, D.J. & Emr, S.D. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J. Cell Biol. 107, 1369–1383 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Wada, Y., Ohsumi, Y. & Anraku, Y. Genes for directing vacuole morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants. J. Biol. Chem. 267, 18665–18670 (1992).

    CAS  PubMed  Google Scholar 

  21. Wilson, D.W. et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Südhof, T. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. Trimble, W.S., Cowan, D.M. & Scheller, R.H. VAMP-1: A synaptic vesicle-associated integral membrane protein. Proc. Natl. Acad. Sci. USA 85, 4538–4542 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baumert, M., Maycox, P.R., Navone, F., De Camilli, P. & Jahn, R. Synaptobrevin: an integral membrane protein of 18 000 daltons present in small synaptic vesicles of rat brain. EMBO J. 8, 379–384 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Rizo, J., Chen, X. & Arac, D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16, 339–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Tokumaru, H. et al. SNARE complex oligomerization by Spaphin/Complexin is essential for synaptic vesicle exocytosis. Cell 104, 421–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Roggero, C.M. et al. Complexin/synaptotagmin interplay controls acrosomal exocytosis. J. Biol. Chem. 282, 26335–26343 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  PubMed  Google Scholar 

  31. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  PubMed  Google Scholar 

  32. Fasshauer, D., Sutton, R.B., Brunger, A.T. & Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. USA 95, 15781–15786 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rickman, C. & Davletov, B. Mechanism of calcium-independent synaptotagmin binding to target SNAREs. J. Biol. Chem. 278, 5501–5504 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Tang, J. et al. A complexin/synaptotagmin1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Bhalla, A., Chicka, M.C., Tucker, W.C. & Chapman, E.R. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13, 323–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E. & Mella, T.J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Block, M.R., Glick, B.S., Wilcox, C.A., Wieland, F.T. & Rothman, J.E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl. Acad. Sci. USA 85, 7852–7856 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clary, D.O. & Rothman, J.E. Purification of three related peripheral membrane proteins needed for vesicular transport. J. Biol. Chem. 265, 10109–10117 (1990).

    CAS  PubMed  Google Scholar 

  41. Rice, L.M. & Brunger, A.T. Crystal structure of the vesicular transport protein Sec17: Implications for SNAP function in SNARE complex disassembly. Mol. Cell 4, 85–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Cheever, M.L. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat. Cell Biol. 3, 613–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lang, T. et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 20, 2202–2213 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, L., Seeley, S., Wickner, W. & Merz, A. Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell 108, 357–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Collins, K.M. & Wickner, W.T. trans-SNARE complex assembly and yeast vacuole membrane fusion. Proc. Natl. Acad. Sci. USA 104, 8755–8760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nichols, B.J., Ungermann, C., Pelham, H.R.B., Wickner, W.T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199–202 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Cho, S.-J. et al. SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys. J. 83, 2522–2527 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rizo, J. & Südhof, T.C. SNAREs and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci. 3, 641–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Carr, C.M., Grote, E., Munson, M., Hughson, F.M. & Novick, P.J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146, 333–344 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scott, B.L. et al. Sec1p directly stimulates SNARE-mediated membrane fusion in vitro . J. Cell Biol. 167, 75–85 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dulubova, I. et al. How Tlg2p/syntaxin 16 'snares' Vps45. EMBO J. 21, 3620–3631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yamaguchi, T. et al. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev. Cell 2, 295–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Dulubova, I., Sugita, S., Hill, S., Hosaka, M. & Fernandez, I. Südhof, T.C., & Rizo, J. A conformational switch in syntaxin during exocytosis: Role of Munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Misura, K.M., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal Sec1-syntaxin 1a complex. Nature 404, 355–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Peng, R. & Gallwitz, D. Sly1 protein bound to Golgi syntaxin Sec5 allows assembly and contributes to specificity of SNARE fusion complexes. J. Cell Biol. 157, 645–655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goud, B., Salminen, A., Walworth, N.C. & Novick, P.J. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53, 753–768 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Walworth, N.C., Goud, B., Kabcenell, A.K. & Novick, P.J. Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic. EMBO J. 8, 1685–1693 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Collins, R.N., Brennwald, P., Garrett, M., Lauring, A. & Novick, P. Interactions of nucleotide release factor Dss4p with Sec4p in the post-Golgi secretory pathway of yeast. J. Biol. Chem. 272, 18281–18289 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. TerBush, D.R., Maurice, T., Roth, D. & Novick, P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae . EMBO J. 15, 6483–6494 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Finger, F.P. & Novick, P. Spatial regulation of exocytosis; lessons from yeast. J. Cell Biol. 142, 609–612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo, W., Roth, D., Walch-Solumena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sacher, M. et al. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17, 2494–2503 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stroupe, C., Collins, K.M., Fratti, R.A. & Wickner, W. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J. 25, 1579–1589 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wurmser, A.E., Sato, T.K. & Emr, S.D. New component of the vacuolar class C–Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J. Cell Biol. 151, 551–562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, W., Sacher, M. & Ferro-Novick, S. TRAPP stimulates guanine nucleotide exchange on Ypt1p. J. Cell Biol. 151, 289–295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Medkova, M., France, Y.E., Coleman, J. & Novick, P. The rab exchange factor Sec1p reversibly associates with the exocyst. Mol. Biol. Cell 17, 2757–2769 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Christoforidis, S., McBride, H.M., Burgoyne, R.D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999a).

    Article  CAS  PubMed  Google Scholar 

  71. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell Biol. 1, 249–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. De Renzis, S., Sönnichsen, B. & Zerial, M. Divalent Rab effectors regulate the subcompartmental organization and sorting of early endosomes. Nat. Cell Biol. 4, 124–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Miaczynska, M. & Zerial, M. Mosaic organization of the endocytic pathway. Exp. Cell Res. 272, 8–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Lippe, R., Miaczynska, M., Rybin, V., Runge, A. & Zerial, M. Functional synergy between Rab5 effector rabaptin-5 and exchange factor rabex-5 when physically associated in a complex. Mol. Biol. Cell 12, 2219–2228 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin, H.-W. et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol. 170, 607–618 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McBride, H.M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, L., Merz, A., Collins, K. & Wickner, W. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J. Cell Biol. 160, 365–374 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fratti, R., Jun, Y., Merz, A.J., Margolis, N. & Wickner, W. Interdependent assembly of specific “regulatory” lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J. Cell Biol. 167, 1087–1098 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jun, Y. et al. Reversible, cooperative reactions of yeast vacuole docking. EMBO J. 25, 5260–5269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Struck, D.K., Hoekstra, D. & Pagano, R.E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20, 4093–4099 (1981).

    Article  CAS  PubMed  Google Scholar 

  82. Düzgünes, N., Allen, T.M., Fedor, J. & Papahadjopoulos, D. Lipid mixing during membrane aggregation and fusion: Why fusion assays disagree. Biochemistry 26, 8435–8442 (1987).

    Article  PubMed  Google Scholar 

  83. Meers, P., Ali, S., Erukulla, R. & Janoff, A.S. Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. Biochim. Biophys. Acta 1467, 227–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. McNew, J.A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Zwilling, D. et al. Early endosomal SNAREs form a structurally conserved SNARE complex and fuse liposomes with multiple topologies. EMBO J. 26, 9–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.-K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12, 417–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. McNew, J.A., Weber, T., Engelman, D.M., Söllner, T.H. & Rothman, J.E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415–421 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Nickel, W. et al. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl. Acad. Sci. USA 96, 12571–12576 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, X. et al. SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys. J. 90, 2062–2074 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Dennison, S.M., Bowen, M.E., Brunger, A.T. & Lentz, B.R. Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys. J. 90, 1661–1675 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Starai, V., Jun, Y. & Wickner, W. Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proc. Natl. Acad. Sci. USA 104, 13551–13558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jun, Y., Xu, H., Thorngren, N. & Wickner, W. Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. EMBO J. 26, 4935–4945 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Melia, T.J., You, D., Tareste, D.C. & Rothman, J.E. Lipidic antagonists to SNARE-mediated fusion. J. Biol. Chem. 281, 29597–29605 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Hirling, H. & Scheller, R. Phosphorylation of synaptic vesicle proteins: Modulation of the aSNAP interaction with the core complex. Proc. Natl. Acad. Sci. USA 93, 11945–11949 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fujita, Y. et al. Phosphorylation of Munc-18/nSec1/rbSec1 by protein kinase C. J. Biol. Chem. 271, 7265–7268 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. LaGrassa, T.J. & Ungermann, C. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. J. Cell Biol. 168, 401–414 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shorter, J., Beard, M.B., Seemann, J., Dirac-Svejstrup, A.B. & Warren, G. Sequential tethering of golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J. Cell Biol. 157, 45–62 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nakamura, N., Hirata, A., Ohsumi, Y. & Wada, Y. Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membrane and involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae . J. Biol. Chem. 272, 11344–11349 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Langosch, D. et al. Conformation of the synaptobrevin transmembrane domain. J. Mol. Biol. 311, 709–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Hofmann, M.W. et al. Self-interaction of a SNARE transmembrane domain promotes the hemifusion to fusion transition. J. Mol. Biol. 364, 1048–1060 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Siegel, D.P. et al. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion. Biophys. J. 90, 200–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Bowen, M. & Brunger, A.T. Conformation of the synaptobrevin transmembrane domain. Proc. Natl. Acad. Sci. USA 103, 8378–8383 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Das, S. & Rand, R.P. Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem. Biophys. Res. Commun. 124, 491–496 (1984).

    Article  CAS  PubMed  Google Scholar 

  106. Hales, K.G. & Fuller, M.T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Hermann, G.J., Thatcher, J.W. & Mills, J.P. Hales, K.G., Fuller, M.T., Nunnari, J., & Shaw, J.M. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359–373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rapaport, D., Brunner, M., Neupert, W. & Westermann, B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae . J. Biol. Chem. 273, 20150–20155 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Koshiba, T. et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Meeusen, S., McCaffery, J.M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Sesaki, H. & Jensen, R.E. Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J. Biol. Chem. 279, 28298–28303 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Wong, E.D. et al. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341–352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Meeusen, S. et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Mohler, W.A. et al. The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev. Cell 2, 355–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Sapir, A. et al. AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans . Dev. Cell 12, 683–698 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Podbilewicz, B. et al. The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev. Cell 11, 471–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Shemer, G. et al. EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans . Curr. Biol. 14, 1587–1591 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. del Campo, J.J. et al. Fusogenic activity of EFF-1 is regulated via dynamic localization in fusing somatic cells of C. elegans . Curr. Biol. 15, 413–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. McCaffrey, G., Clay, F.J., Kelsay, K. & Sprague, G.F. Jr. Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae . Mol. Cell. Biol. 7, 2680–2690 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Elion, E.A., Trueheart, J. & Fink, G.R. Fus2 localizes near the site of cell fusion and is required for both cell fusion and nuclear alignment during zygote formation. J. Cell Biol. 130, 1283–1296 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Gammie, A.E., Brizzio, V. & Rose, M.D. Distinct morphological phenotypes of cell fusion mutants. Mol. Biol. Cell 9, 1395–1410 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Heiman, M.G. & Walter, P. Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J. Cell Biol. 151, 719–730 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jin, H., Carlile, C., Nolan, S. & Grote, E. Prm1 prevents contact-dependent lysis of yeast mating pairs. Eukaryot. Cell 3, 1664–1673 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Grosshans, B.L., Ortiz, D. & Novick, P. Rabs and their effectors: Achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. USA 103, 11821–11827 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sönnichsen, B. et al. A role for giantin in docking COPI vesicles to Golgi membranes. J. Cell Biol. 140, 1013–1021 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Barr, F.A., Nakamura, N. & Warren, G. Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae. EMBO J. 17, 3258–3268 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jahn, R. & Scheller, R. SNAREs — engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–646 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Shaw, A. Engel and P. Walter for discussions. Work in the authors' laboratories was supported by grants from the US National Institutes of Health and funds from the Howard Hughes Medical Institute (R.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Wickner or Randy Schekman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wickner, W., Schekman, R. Membrane fusion. Nat Struct Mol Biol 15, 658–664 (2008). https://doi.org/10.1038/nsmb.1451

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing