Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes

Abstract

The pluripotency-determining gene Oct3/4 (also called Pou5f1) undergoes postimplantation silencing in a process mediated by the histone methyltransferase G9a. Microarray analysis now shows that this enzyme may operate as a master regulator that inactivates numerous early-embryonic genes by bringing about heterochromatinization of methylated histone H3K9 and de novo DNA methylation. Genetic studies in differentiating embryonic stem cells demonstrate that a point mutation in the G9a SET domain prevents heterochromatinization but still allows de novo methylation, whereas biochemical and functional studies indicate that G9a itself is capable of bringing about de novo methylation through its ankyrin domain, by recruiting Dnmt3a and Dnmt3b independently of its histone methyltransferase activity. These modifications seem to be programmed for carrying out two separate biological functions: histone methylation blocks target-gene reactivation in the absence of transcriptional repressors, whereas DNA methylation prevents reprogramming to the undifferentiated state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide G9a-dependent de novo methylation.
Figure 2: Heterochromatinization is prevented by point mutation in the G9a SET domain.
Figure 3: G9a recruits Dnmt3a and Dnmt3b.
Figure 4: Mapping the G9a- and Dnmt-interacting domains.
Figure 5: ANK-dependent Oct3/4 methylation.
Figure 6: Reactivation and reprogramming of Oct3/4, Nanog, Dnmt3L and Tnfsrf8 genes are affected by their epigenetic state.

Similar content being viewed by others

References

  1. Surani, M.A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007).

    Article  CAS  Google Scholar 

  2. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    Article  CAS  Google Scholar 

  3. Niwa, H. Open conformation chromatin and pluripotency. Genes Dev. 21, 2671–2676 (2007).

    Article  CAS  Google Scholar 

  4. Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  Google Scholar 

  5. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  Google Scholar 

  6. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  7. Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8, 188–194 (2006).

    Article  CAS  Google Scholar 

  8. Gidekel, S., Pizov, G., Bergman, Y. & Pikarsky, E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361–370 (2003).

    Article  CAS  Google Scholar 

  9. Imamura, M. et al. Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. BMC Dev. Biol. 6, 34 (2006).

    Article  Google Scholar 

  10. Hattori, N. et al. Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12, 387–396 (2007).

    Article  CAS  Google Scholar 

  11. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2005).

    Article  Google Scholar 

  12. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  13. Jackson, J.P., Lindroth, A.M., Cao, X. & Jacobsen, S.E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  CAS  Google Scholar 

  14. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  15. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  16. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  17. Cowan, C.A., Atienza, J., Melton, D.A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    Article  CAS  Google Scholar 

  18. Freitag, M. & Selker, E.U. Controlling DNA methylation: many roads to one modification. Curr. Opin. Genet. Dev. 15, 191–199 (2005).

    Article  CAS  Google Scholar 

  19. Collins, R.E. et al. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J. Biol. Chem. 280, 5563–5570 (2005).

    Article  CAS  Google Scholar 

  20. Ikegami, K. et al. Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells. Genes Cells 12, 1–11 (2007).

    Article  CAS  Google Scholar 

  21. Xin, Z. et al. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J. Biol. Chem. 278, 14996–15000 (2003).

    Article  CAS  Google Scholar 

  22. Esteve, P.O. et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 20, 3089–3103 (2006).

    Article  CAS  Google Scholar 

  23. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    Article  CAS  Google Scholar 

  24. Collins, R.E. et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat. Struct. Mol. Biol. 15, 245–250 (2008).

    Article  CAS  Google Scholar 

  25. Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815–826 (2005).

    Article  CAS  Google Scholar 

  26. Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040 (2003).

    Article  CAS  Google Scholar 

  27. Freitag, M., Hickey, P.C., Khlafallah, T.K., Read, N.D. & Selker, E.U. HP1 is essential for DNA methylation in neurospora. Mol. Cell 13, 427–434 (2004).

    Article  CAS  Google Scholar 

  28. Smallwood, A., Esteve, P.O., Pradhan, S. & Carey, M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21, 1169–1178 (2007).

    Article  CAS  Google Scholar 

  29. Schoorlemmer, J. et al. Characterization of a negative retinoic acid response element in the murine Oct4 promoter. Mol. Cell. Biol. 14, 1122–1136 (1994).

    Article  CAS  Google Scholar 

  30. Ben-Shushan, E., Sharir, H., Pikarsky, E. & Bergman, Y. A dynamic balance between ARP-1/COUP-TFII, EAR-3/COUP-TFI, and retinoic acid receptor:retinoid X receptor heterodimers regulates Oct-3/4 expression in embryonal carcinoma cells. Mol. Cell. Biol. 15, 1034–1048 (1995).

    Article  CAS  Google Scholar 

  31. Fuhrmann, G. et al. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell 1, 377–387 (2001).

    Article  CAS  Google Scholar 

  32. Boiani, M., Eckardt, S., Scholer, H.R. & McLaughlin, K.J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002).

    Article  CAS  Google Scholar 

  33. Bortvin, A. et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680 (2003).

    Article  CAS  Google Scholar 

  34. Ma, D.K., Chiang, C.H., Ponnusamy, K., Ming, G.L. & Song, H. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 2131–2141 (2008).

    Article  CAS  Google Scholar 

  35. Shi, Y. et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525–528 (2008).

    Article  CAS  Google Scholar 

  36. Benetti, R., Garcia-Cao, M. & Blasco, M.A. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet. 39, 243–250 (2007).

    Article  CAS  Google Scholar 

  37. Bourc'his, D., Xu, G.L., Lin, C.S., Bollman, B. & Bestor, T.H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    Article  CAS  Google Scholar 

  38. Simonsson, S. & Gurdon, J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell Biol. 6, 984–990 (2004).

    Article  CAS  Google Scholar 

  39. Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature 441, 1061–1067 (2006).

    Article  CAS  Google Scholar 

  40. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  Google Scholar 

  41. Pikarsky, E., Sharir, H., Ben-Shushan, E. & Bergman, Y. Retinoic acid represses Oct-3/4 gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region. Mol. Cell. Biol. 14, 1026–1038 (1994).

    Article  CAS  Google Scholar 

  42. Hajkova, P. et al. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol. Biol. 200, 143–154 (2002).

    CAS  PubMed  Google Scholar 

  43. Suetake, I., Shinozaki, F., Miyagawa, J., Takeshima, H. & Tajima, S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J. Biol. Chem. 279, 27816–27823 (2004).

    Article  CAS  Google Scholar 

  44. Gyory, I., Wu, J., Fejer, G., Seto, E. & Wright, K.L. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat. Immunol. 5, 299–308 (2004).

    Article  CAS  Google Scholar 

  45. Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005).

    Article  CAS  Google Scholar 

  46. Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).

    Article  CAS  Google Scholar 

  47. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  Google Scholar 

  48. Deplus, R. et al. Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res. 30, 3831–3838 (2002).

    Article  CAS  Google Scholar 

  49. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256 (2002).

    Article  CAS  Google Scholar 

  50. Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 32 Suppl, 496–501 (2002).

    Article  CAS  Google Scholar 

  51. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001).

    Article  CAS  Google Scholar 

  52. Boiani, M., Eckardt, S., Leu, N.A., Scholer, H.R. & McLaughlin, K.J. Pluripotency deficit in clones overcome by clone-clone aggregation: epigenetic complementation? EMBO J. 22, 5304–5312 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Tajima (Osaka University) for Dnmt3a and 3b expression vectors, K. Wright (University of South Florida) for the hemagglutinin-G9a expression vector and S. Pradhan (New England Biolabs) for pGEX-G9a. This work was supported by grants from the Israel Academy of Science (Y.B. and H.C.), Philip Morris USA Inc. and Philip Morris International (S.E.-L., Y.B. and H.C.), the National Institutes of Health (Y.B. and H.C.), the Israel Cancer Research Fund (Y.B. and H.C.) and the Prostate Cancer Foundation (H.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.E.-L., N.F., M.A.-R. and A.G. performed the ChIP, mDIP microarray, bisulfite sequencing, RNA analyses, some of the immunoprecipitation experiments and western blots, and reversal experiments; Y. Shufaro performed the nuclear transfer experiments; J.U. and Y. Shinkai generated the knockout and stable cell lines; R.D. and F.F. carried out some of the immunoprecipitation and western blot analyses. H.C. and Y.B. planned and supervised the research and wrote the manuscript. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Howard Cedar.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1 and 2 (PDF 1283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 15, 1176–1183 (2008). https://doi.org/10.1038/nsmb.1476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing