Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b

Abstract

The Ink4a-Arf-Ink4b locus has a crucial role in both cellular senescence and tumorigenesis. JmjC domain–containing histone demethylase 1b (Jhdm1b, also known as Kdm2b and Fbxl10), the mammalian paralog of the histone demethylase Jhdm1a (also known as Kdm2a and Fbxl11), has been implicated in cell-cycle regulation and tumorigenesis. In this report, we show that Jhdm1b is a histone H3 lysine 36 (H3K36) demethylase. Knockdown of Jhdm1b in primary mouse embryonic fibroblasts inhibits cell proliferation and induces cellular senescence in a pRb- and p53 pathway–dependent manner. Notably, the effect of Jhdm1b on cell proliferation and cellular senescence is mediated through derepression of p15Ink4b, as loss of p15Ink4b function rescues cell-proliferation defects in Jhdm1b-knockdown cells. Chromatin immunoprecipitation on ectopically expressed Jhdm1b demonstrates that Jhdm1b targets the p15Ink4b locus and regulates its expression in an enzymatic activity–dependent manner. Alteration of Jhdm1b level affects Ras-induced neoplastic transformation. Collectively, our results indicate that Jhdm1b is an H3K36 demethylase that regulates cell proliferation and senescence through p15Ink4b.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Jhdm1b is a H3K36-specific demethylase in vitro and in vivo.
Figure 2: Jhdm1b knockdown in primary MEFs inhibits cell proliferation and induces cellular senescence.
Figure 3: Jhdm1b regulates cell proliferation through p15Ink4b.
Figure 4: Jhdm1b regulates cell proliferation and p15Ink4b expression in a histone-demethylase activity–dependent manner.
Figure 5: Jhdm1b facilitates Ras-induced neoplastic transformation.

Similar content being viewed by others

References

  1. Gil, J. & Peters, G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 7, 667–677 (2006).

    Article  CAS  Google Scholar 

  2. Ortega, S., Malumbres, M. & Barbacid, M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta 1602, 73–87 (2002).

    CAS  PubMed  Google Scholar 

  3. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  Google Scholar 

  4. Kannengiesser, C. et al. New founder germline mutations of CDKN2A in melanoma-prone families and multiple primary melanoma development in a patient receiving levodopa treatment. Genes Chromosom. Cancer 46, 751–760 (2007).

    Article  CAS  Google Scholar 

  5. Ogawa, S. et al. Homozygous loss of the cyclin-dependent kinase 4-inhibitor (p16) gene in human leukemias. Blood 84, 2431–2435 (1994).

    CAS  PubMed  Google Scholar 

  6. Okuda, T. et al. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood 85, 2321–2330 (1995).

    CAS  PubMed  Google Scholar 

  7. Krimpenfort, P. et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448, 943–946 (2007).

    Article  CAS  Google Scholar 

  8. Bracken, A.P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  Google Scholar 

  9. Kotake, Y. et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4α tumor suppressor gene. Genes Dev. 21, 49–54 (2007).

    Article  CAS  Google Scholar 

  10. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    Article  CAS  Google Scholar 

  11. Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R. & Pagano, M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450, 309–313 (2007).

    Article  CAS  Google Scholar 

  12. Pfau, R. et al. Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proc. Natl. Acad. Sci. USA 105, 1907–1912 (2008).

    Article  CAS  Google Scholar 

  13. Suzuki, T., Minehata, K., Akagi, K., Jenkins, N.A. & Copeland, N.G. Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO J. 25, 3422–3431 (2006).

    Article  CAS  Google Scholar 

  14. Koyama-Nasu, R., David, G. & Tanese, N. The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun. Nat. Cell Biol. 9, 1074–1080 (2007).

    Article  CAS  Google Scholar 

  15. Klose, R.J. et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128, 889–900 (2007).

    Article  CAS  Google Scholar 

  16. Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421, 652–656 (2003).

    Article  CAS  Google Scholar 

  17. Cales, C. et al. Inactivation of the polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated with Ink4a deletion. Mol. Cell. Biol. 28, 1018–1028 (2008).

    Article  CAS  Google Scholar 

  18. Voncken, J.W. et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl. Acad. Sci. USA 100, 2468–2473 (2003).

    Article  CAS  Google Scholar 

  19. Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  Google Scholar 

  20. Goodrich, D.W., Wang, N.P., Qian, Y.W., Lee, E.Y. & Lee, W.H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67, 293–302 (1981).

    Article  Google Scholar 

  21. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  22. Rosu-Myles, M. et al. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors. Exp. Hematol. 35, 394–406 (2007).

    Article  CAS  Google Scholar 

  23. Bannister, A.J. et al. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 280, 17732–17736 (2005).

    Article  CAS  Google Scholar 

  24. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  Google Scholar 

  25. Morris, S.A. et al. Histone H3 K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot. Cell 4, 1446–1454 (2005).

    Article  CAS  Google Scholar 

  26. Rao, B., Shibata, Y., Strahl, B.D. & Lieb, J.D. Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol. Cell. Biol. 25, 9447–9459 (2005).

    Article  CAS  Google Scholar 

  27. Cao, R. et al. Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol. Cell. Biol. 28, 1862–1872 (2008).

    Article  CAS  Google Scholar 

  28. Zhang, X. et al. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111, 117–127 (2002).

    Article  CAS  Google Scholar 

  29. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  Google Scholar 

  30. Zeng, P.Y., Vakoc, C.R., Chen, Z.C., Blobel, G.A. & Berger, S.L. In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41, 694 696, 698 (2006).

    Article  Google Scholar 

  31. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Wolff (US National Cancer Institute) for the p15Ink4b-null mice. This work is partially supported by the US National Institutes of Health (GM068804). J.H. is a fellow of the Leukemia and Lymphoma Society. Y.Z. is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.H. contributed data for Figures 2, 3, 4 and 5; E.M.K. contributed data for Figures 1 and 4; Y.T. constructed plasmids and generated the wild-type Jhdm1b baculovirus; Y.Z. oversaw the project; E.M.K., J.H., & Y.Z. wrote the paper.

Corresponding author

Correspondence to Yi Zhang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1772 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Kallin, E., Tsukada, Yi. et al. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b. Nat Struct Mol Biol 15, 1169–1175 (2008). https://doi.org/10.1038/nsmb.1499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing