Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding

Abstract

Coupling between ATPase and track binding sites is essential for molecular motors to move along cytoskeletal tracks. In dynein, these sites are separated by a long coiled coil stalk that must mediate communication between them, but the underlying mechanism remains unclear. Here we show that changes in registration between the two helices of the coiled coil can perform this function. We locked the coiled coil at three specific registrations using oxidation to disulfides of paired cysteine residues introduced into the two helices. These trapped ATPase activity either in a microtubule-independent high or low state, and microtubule binding activity either in an ATP-insensitive strong or weak state, depending on the registry of the coiled coil. Our results provide direct evidence that dynein uses sliding between the two helices of the stalk to couple ATPase and microtubule binding activities during its mechanochemical cycle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of double-cysteine mutants of the 380-kDa dynein motor domain for disulfide cross-linking between the two helices of the stalk coiled coil.
Figure 2: Locking the registry between two helices of the stalk coiled coil of double-cysteine mutants by oxidative disulfide cross-linking.
Figure 3: Effects of locking the registry of the stalk coiled coil on ATP-sensitive microtubule binding activity.
Figure 4: Effects of locking the registry of the stalk coiled coil on microtubule-activated ATPase activity.
Figure 5: Impact on dynein ATPase activity of fixing stalk registry using the stable antiparallel SRS coiled coil.
Figure 6: Effects of locking the registry of the stalk coiled coil on the recovery-stroke and powerstroke steps in the mechanochemical cycle.
Figure 7: Model for stalk-mediated two-way communication during the course of cytoplasmic dynein's mechanochemical cycle.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gibbons, I.R. & Rowe, A.J. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149, 424–426 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Paschal, B.M. & Vallee, R.B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. DiBella, L.M. & King, S.M. Dynein motors of the Chlamydomonas flagellum. Int. Rev. Cytol. 210, 227–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Vallee, R.B., Williams, J.C., Varma, D. & Barnhart, L.E. Dynein: an ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Pfister, K.K. et al. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet. 2, e1 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  8. Nishiura, M. et al. A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules. J. Biol. Chem. 279, 22799–22802 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Reck-Peterson, S.L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samso, M., Radermacher, M., Frank, J. & Koonce, M.P. Structural characterization of a dynein motor domain. J. Mol. Biol. 276, 927–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Mocz, G. & Gibbons, I.R. Phase partition analysis of nucleotide binding to axonemal dynein. Biochemistry 35, 9204–9211 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Gibbons, I.R. et al. Photosensitized cleavage of dynein heavy chains. Cleavage at the “V1 site” by irradiation at 365 nm in the presence of ATP and vanadate. J. Biol. Chem. 262, 2780–2786 (1987).

    CAS  PubMed  Google Scholar 

  14. Silvanovich, A., Li, M.G., Serr, M., Mische, S. & Hays, T.S. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol. Biol. Cell 14, 1355–1365 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reck-Peterson, S.L. & Vale, R.D. Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 1491–1495 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y.Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Goodenough, U. & Heuser, J. Structural comparison of purified dynein proteins with in situ dynein arms. J. Mol. Biol. 180, 1083–1118 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. King, S.M. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Gee, M.A., Heuser, J.E. & Vallee, R.B. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Koonce, M.P. Identification of a microtubule-binding domain in a cytoplasmic dynein heavy chain. J. Biol. Chem. 272, 19714–19718 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Massachusetts, 2001).

    Google Scholar 

  23. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Vallee, R.B. & Gee, M.A. Make room for dynein. Trends Cell Biol. 8, 490–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Oiwa, K. & Sakakibara, H. Recent progress in dynein structure and mechanism. Curr. Opin. Cell Biol. 17, 98–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Gibbons, I.R. et al. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 280, 23960–23965 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu, T. & Johnson, K.A. Presteady state kinetic analysis of vanadate-induced inhibition of the dynein ATPase. J. Biol. Chem. 258, 13833–13840 (1983).

    CAS  PubMed  Google Scholar 

  28. Shima, T., Kon, T., Imamula, K., Ohkura, R. & Sutoh, K. Two modes of microtubule sliding driven by cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 103, 17736–17740 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol. 12, 513–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Mogami, T., Kon, T., Ito, K. & Sutoh, K. Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein. J. Biol. Chem. 282, 21639–21644 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Arora, K. & Brooks, C.L., III. Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism. Proc. Natl. Acad. Sci. USA 104, 18496–18501 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carter, A.P. et al. Structure and functional role of dynein's microtubule-binding domain. Science 322, 1691–1695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holzbaur, E.L. & Johnson, K.A. Microtubules accelerate ADP release by dynein. Biochemistry 28, 7010–7016 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Holzbaur, E.L. & Johnson, K.A. ADP release is rate limiting in steady-state turnover by the dynein adenosinetriphosphatase. Biochemistry 28, 5577–5585 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 104, 16134–16139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gennerich, A., Carter, A.P., Reck-Peterson, S.L. & Vale, R.D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin, J., Gruber, M. & Lupas, A.N. Coiled coils meet the chaperone world. Trends Biochem. Sci. 29, 455–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Schumacher, J., Joly, N., Rappas, M., Zhang, X. & Buck, M. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J. Struct. Biol. 156, 190–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Haslberger, T. et al. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. Cell 25, 247–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Samso, M. & Koonce, M.P. 25 angstrom resolution structure of a cytoplasmic dynein motor reveals a seven-member planar ring. J. Mol. Biol. 340, 1059–1072 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Burgess, S.A., Walker, M.L., Sakakibara, H., Oiwa, K. & Knight, P.J. The structure of dynein-c by negative stain electron microscopy. J. Struct. Biol. 146, 205–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies (Academic Press, New York, 1996).

    Google Scholar 

  45. Gee, M. & Vallee, R. The role of the dynein stalk in cytoplasmic and flagellar motility. Eur. Biophys. J. 27, 466–473 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Koonce (Wadsworth Center) for providing the anti-stalk antibody. This work was supported by a Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science (JSPS) to K.S., a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) to K.S., a Grant-in-Aid for Young Scientists (A) from MEXT to T.K., and in part by The Wellcome Trust to A.J.R., the Biotechnology and Biological Sciences Research Council (UK) to S.A.B. and P.J.K., and Grant GM30401 from the US National Institutes of Health to I.R.G.

Author information

Authors and Affiliations

Authors

Contributions

T.K., I.R.G and K.S. designed the study; T.K., K.I. and R.O. performed the biochemical experiments; A.J.R., P.J.K. and S.A.B. performed the EM analyses; K.S. supervised the study; T.K. wrote the first draft of the manuscript and all authors contributed to the preparation of the final version.

Corresponding author

Correspondence to Kazuo Sutoh.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon, T., Imamula, K., Roberts, A. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 16, 325–333 (2009). https://doi.org/10.1038/nsmb.1555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing