Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes

Abstract

In analogy to ubiquitin in eukaryotes, the bacterial protein Pup is attached to lysine residues of substrate proteins, thereby targeting them for proteasomal degradation. It has been proposed that, before its attachment, Pup is modified by deamidation of its C-terminal glutamine to glutamate. Here we have identified Dop (locus tag Rv2112) as the specific deamidase of Pup in Mycobacterium tuberculosis. Deamidation requires ATP as a cofactor but not its hydrolysis. Furthermore, we provide experimental evidence that PafA (locus tag Rv2097) ligates deamidated Pup to the proteasomal substrate proteins FabD and PanB. This formation of an isopeptide bond requires hydrolysis of ATP to ADP, suggesting that deamidated Pup is activated for conjugation via phosphorylation of its C-terminal glutamate. By combining these enzymes, we have reconstituted the complete bacterial ubiquitin-like modification pathway in vitro, consisting of deamidation and ligation steps catalyzed by Pup deamidase (Dop) and Pup ligase (PafA).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pup interacts with PafA and Dop, two homologous but distinct enzymes.
Figure 2: Dop deamidates the C-terminal glutamine of Pup.
Figure 3: Dop does not hydrolyze ATP during deamidation of Pup.
Figure 4: PafA is sufficient to conjugate deamidated Pup to a substrate protein.
Figure 5: Pup is coupled to substrates by separate deamidation and conjugation steps.

Similar content being viewed by others

References

  1. Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  Google Scholar 

  2. Goldberg, A.L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17 (2007).

    Article  CAS  Google Scholar 

  3. Pickart, C.M. & Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5, 177–187 (2004).

    Article  CAS  Google Scholar 

  4. Inobe, T. & Matouschek, A. Protein targeting to ATP-dependent proteases. Curr. Opin. Struct. Biol. 18, 43–51 (2008).

    Article  CAS  Google Scholar 

  5. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  Google Scholar 

  6. Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7, 742–749 (2005).

    Article  CAS  Google Scholar 

  7. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008).

    Article  CAS  Google Scholar 

  8. Burns, K.E., Liu, W.T., Boshoff, H.I., Dorrestein, P.C. & Barry, C.E., III. Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem. 284, 3069–3075 (2009).

    Article  CAS  Google Scholar 

  9. Pearce, M.J., Mintseris, J., Ferreyra, J., Gygi, S.P. & Darwin, K.H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis . Science 322, 1104–1107 (2008).

    Article  CAS  Google Scholar 

  10. Lin, G. et al. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol. Microbiol. 59, 1405–1416 (2006).

    Article  CAS  Google Scholar 

  11. Tamura, T. et al. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus . Curr. Biol. 5, 766–774 (1995).

    Article  CAS  Google Scholar 

  12. Darwin, K.H., Lin, G., Chen, Z., Li, H. & Nathan, C.F. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol. Microbiol. 55, 561–571 (2005).

    Article  CAS  Google Scholar 

  13. Pearce, M.J. et al. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J. 25, 5423–5432 (2006).

    Article  CAS  Google Scholar 

  14. Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C., Weich, N. & Nathan, C.F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302, 1963–1966 (2003).

    Article  CAS  Google Scholar 

  15. Zhang, X. et al. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. J. Struct. Biol. 146, 155–165 (2004).

    Article  CAS  Google Scholar 

  16. Festa, R.A., Pearce, M.J. & Darwin, K.H. Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis . J. Bacteriol. 189, 3044–3050 (2007).

    Article  CAS  Google Scholar 

  17. Iyer, L.M., Burroughs, A.M. & Aravind, L. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol. Direct 3, 45 (2008).

    Article  Google Scholar 

  18. Li, Z. et al. The crystal structure of MCAT from Mycobacterium tuberculosis reveals three new catalytic models. J. Mol. Biol. 371, 1075–1083 (2007).

    Article  CAS  Google Scholar 

  19. Abbott, J.J. et al. Structure prediction and active site analysis of the metal binding determinants in γ-glutamylcysteine synthetase. J. Biol. Chem. 276, 42099–42107 (2001).

    Article  CAS  Google Scholar 

  20. Jez, J.M., Cahoon, R.E. & Chen, S. Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J. Biol. Chem. 279, 33463–33470 (2004).

    Article  CAS  Google Scholar 

  21. Unno, H. et al. Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. J. Biol. Chem. 281, 29287–29296 (2006).

    Article  CAS  Google Scholar 

  22. Hibi, T. et al. Crystal structure of γ-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc. Natl. Acad. Sci. USA 101, 15052–15057 (2004).

    Article  CAS  Google Scholar 

  23. Ronzio, R.A. & Meister, A. Phosphorylation of methionine sulfoximine by glutamine synthetase. Proc. Natl. Acad. Sci. USA 59, 164–170 (1968).

    Article  CAS  Google Scholar 

  24. Ronzio, R.A., Rowe, W.B. & Meister, A. Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry 8, 1066–1075 (1969).

    Article  CAS  Google Scholar 

  25. Abbott, J.J., Ford, J.L. & Phillips, M.A. Substrate binding determinants of Trypanosoma brucei γ-glutamylcysteine synthetase. Biochemistry 41, 2741–2750 (2002).

    Article  CAS  Google Scholar 

  26. Huang, C.S., Moore, W.R. & Meister, A. On the active site thiol of γ-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulation. Proc. Natl. Acad. Sci. USA 85, 2464–2468 (1988).

    Article  CAS  Google Scholar 

  27. Tu, Z. & Anders, M.W. Identification of an important cysteine residue in human glutamate-cysteine ligase catalytic subunit by site-directed mutagenesis. Biochem. J. 336, 675–680 (1998).

    Article  CAS  Google Scholar 

  28. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  29. Daugelat, S. et al. The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes Infect. 5, 1082–1095 (2003).

    Article  CAS  Google Scholar 

  30. Levitzki, A. Determination of submicro quantities of ammonia. Anal. Biochem. 33, 335–340 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Functional Genomics Center Zurich (FGCZ) for MS, A. Geerlof (European Molecular Biology Laboratory, Hamburg) for the pMyC expression vector, the Richmond laboratory (ETH Zürich) for the His6-Thioredoxin-TEV fusion vector and P. Sander (University of Zurich) for the mycobacterial strains. This work was supported by the Swiss National Science Foundation (SNF), the National Center for Excellence in Research (NCCR) Structural Biology program of the SNF, an ETH research grant and a Kekulé fellowship by the 'Fonds der Chemischen Industrie' to F.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eilika Weber-Ban.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1972 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Striebel, F., Imkamp, F., Sutter, M. et al. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16, 647–651 (2009). https://doi.org/10.1038/nsmb.1597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing