Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover

Abstract

Both end structures of eukaryotic mRNAs, namely the 5′ cap and 3′ poly(A) tail, are necessary for transcript stability, and loss of either is sufficient to stimulate decay. mRNA turnover is classically thought to be initiated by deadenylation, as has been particularly well described in Saccharomyces cerevisiae. Here we describe two additional, parallel decay pathways in the fission yeast Schizosaccharomyces pombe. First, in fission yeast mRNA decapping is frequently independent of deadenylation. Second, Cid1-dependent uridylation of polyadenylated mRNAs, such as act1, hcn1 and urg1, seems to stimulate decapping as part of a novel mRNA turnover pathway. Accordingly, urg1 mRNA is stabilized in cid1Δ cells. Uridylation and deadenylation act redundantly to stimulate decapping, and our data suggest that uridylation-dependent decapping is mediated by the Lsm1–7 complex. As human cells contain Cid1 orthologs, uridylation may form the basis of a widespread, conserved mechanism of mRNA decay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decapping of mRNA can be independent of deadenylation.
Figure 2: Decapped mRNAs are often uridylated.
Figure 3: mRNA uridylation is Cid1-dependent, and impairment of decapping increases uridylation on decapped messages.
Figure 4: Uridylation precedes decapping.
Figure 5: urg1 mRNA is more stable in cells lacking Cid1.
Figure 6: Deadenylation and uridylation function as redundant pathways in mRNA decay.
Figure 7: Uridylation-mediated decapping requires Lsm1.
Figure 8: A comparison of decay pathways for bulk mRNA in S. cerevisiae and S. pombe.

Similar content being viewed by others

References

  1. Decker, C.J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Muhlrad, D., Decker, C.J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′ → 3′ digestion of the transcript. Genes Dev. 8, 855–866 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Muhlrad, D., Decker, C.J. & Parker, R. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15, 2145–2156 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson, J.S. & Parker, R.P. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 1497–1506 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shyu, A.B., Belasco, J.G. & Greenberg, M.E. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5, 221–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Couttet, P., Fromont-Racine, M., Steel, D., Pictet, R. & Grange, T. Messenger RNA deadenylylation precedes decapping in mammalian cells. Proc. Natl. Acad. Sci. USA 94, 5628–5633 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, S.W., Norbury, C., Harris, A.L. & Toda, T. Caffeine can override the S-M checkpoint in fission yeast. J. Cell Sci. 112, 927–937 (1999).

    CAS  PubMed  Google Scholar 

  8. Wang, S.W., Toda, T., MacCallum, R., Harris, A.L. & Norbury, C. Cid1, a fission yeast protein required for S-M checkpoint control when DNA polymerase δ or ε is inactivated. Mol. Cell. Biol. 20, 3234–3244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rissland, O.S., Mikulasova, A. & Norbury, C.J. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol. Cell. Biol. 27, 3612–3624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwak, J.E. & Wickens, M. A family of poly(U) polymerases. RNA 13, 860–867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trippe, R. et al. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 12, 1494–1504 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aravind, L. & Koonin, E.V. DNA polymerase β-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res. 27, 1609–1618 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen, B. & Goodman, H.M. Uridine addition after microRNA-directed cleavage. Science 306, 997 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kaygun, H. & Marzluff, W.F. Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat. Struct. Mol. Biol. 12, 794–800 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Mullen, T.E. & Marzluff, W.F. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev. 22, 50–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pandey, N.B. & Marzluff, W.F. The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol. 7, 4557–4559 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mertins, P. & Gallwitz, D. A single intronless action gene in the fission yeast Schizosaccharomyces pombe: nucleotide sequence and transcripts formed in homologous and heterologous yeast. Nucleic Acids Res. 15, 7369–7379 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muhlrad, D. & Parker, R. Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev. 6, 2100–2111 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Lackner, D.H. et al. A network of multiple regulatory layers shapes gene expression in fission yeast. Mol. Cell 26, 145–155 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rissland, O.S. & Norbury, C.J. The Cid1 poly(U) polymerase. Biochim. Biophys. Acta 1779, 286–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Sakuno, T. et al. Decapping reaction of mRNA requires Dcp1 in fission yeast: its characterization in different species from yeast to human. J. Biochem. 136, 805–812 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. West, S., Gromak, N., Norbury, C.J. & Proudfoot, N.J. Adenylation and exosome-mediated degradation of cotranscriptionally cleaved pre-messenger RNA in human cells. Mol. Cell 21, 437–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Santiago, T.C., Purvis, I.J., Bettany, A.J. & Brown, A.J. The relationship between mRNA stability and length in Saccharomyces cerevisiae . Nucleic Acids Res. 14, 8347–8360 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watt, S. et al. urg1: A uracil-regulatable promoter system for fission yeast with short induction and repression times. PLoS One 3, e1428 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae . EMBO J. 21, 1427–1436 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae . Cell 104, 377–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Boeck, R. et al. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271, 432–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Brown, C.E., Tarun, S.Z., Jr., Boeck, R. & Sachs, A.B. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae . Mol. Cell. Biol. 16, 5744–5753 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lai, W.S., Kennington, E.A. & Blackshear, P.J. Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol. Cell. Biol. 23, 3798–3812 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lejeune, F., Li, X. & Maquat, L.E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi, S., Kontani, K., Araki, Y. & Katada, T. Caf1 regulates translocation of ribonucleotide reductase by releasing nucleoplasmic Spd1-Suc22 assembly. Nucleic Acids Res. 35, 1187–1197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tharun, S. et al. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404, 515–518 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Song, M.G. & Kiledjian, M. 3′ terminal oligo U-tract-mediated stimulation of decapping. RNA 13, 2356–2365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marzluff, W.F. Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr. Opin. Cell Biol. 17, 274–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Zheng, D. et al. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J. Cell Biol. 182, 89–101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brengues, M., Teixeira, D. & Parker, R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486–489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe . Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe . Yeast 14, 943–951 (1998).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Bartel for his support. We also thank other members of the laboratory, A. Woollard, E. Wahle and N. Proudfoot for helpful discussions and critical reading of the manuscript, as well as T. Katada (University of Tokyo) for providing various strains. This work was supported by Cancer Research UK and the Biotechnologies and Biological Sciences Research Council. O.S.R. was supported by a scholarship from the Rhodes Trust.

Author information

Authors and Affiliations

Authors

Contributions

O.S.R. performed all the experimental work; O.S.R. and C.J.N. designed the experiments, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Chris J Norbury.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–4 (PDF 1623 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rissland, O., Norbury, C. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 16, 616–623 (2009). https://doi.org/10.1038/nsmb.1601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing