Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins

Abstract

The early events in the life of newly synthesized proteins in the cellular environment are remarkably complex. Concurrently with their synthesis by the ribosome, nascent polypeptides are subjected to enzymatic processing, chaperone-assisted folding or targeting to translocation pores at membranes. The ribosome itself has a key role in these different tasks and governs the interplay between the various factors involved. Indeed, the ribosome serves as a platform for the spatially and temporally regulated association of enzymes, targeting factors and chaperones that act upon the nascent polypeptides emerging from the exit tunnel. Furthermore, the ribosome provides opportunities to coordinate the protein-synthesis activity of its peptidyl transferase center with the protein targeting and folding processes. Here we review the early co-translational events involving the ribosome that guide cytosolic proteins to their native state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The path of the nascent chain through the ribosomal exit tunnel.
Figure 2: N-terminal co-translational enzymatic processing and modification of nascent polypeptides in the vicinity of the ribosome.
Figure 3: Model of bacterial chaperones involved in de novo protein folding.
Figure 4: Interaction of Trigger factor with nascent chains.
Figure 5: Model of eukaryotic chaperones presumably involved in de novo protein folding.
Figure 6: Spatial arrangement of nascent chain–processing factors around the tunnel exit (star).

Similar content being viewed by others

References

  1. Bashan, A. & Yonath, A. Correlating ribosome function with high-resolution structures. Trends Microbiol. 16, 326–335 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Voss, N.R., Gerstein, M., Steitz, T.A. & Moore, P.B. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360, 893–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Picking, W.D., Picking, W.L., Odom, O.W. & Hardesty, B. Fluorescence characterization of the environment encountered by nascent polyalanine and polyserine as they exit Escherichia coli ribosomes during translation. Biochemistry 31, 2368–2375 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Malkin, L.I. & Rich, A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26, 329–346 (1967).

    Article  CAS  PubMed  Google Scholar 

  9. Kosolapov, A. & Deutsch, C. Tertiary interactions within the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 16, 405–411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, J., Kobertz, W.R. & Deutsch, C. Mapping the electrostatic potential within the ribosomal exit tunnel. J. Mol. Biol. 371, 1378–1391 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, J. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12, 1123–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Tsai, C.J. et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J. Mol. Biol. 383, 281–291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crombie, T., Swaffield, J.C. & Brown, A.J.P. Protein folding within the cell is influenced by controlled rates of polypeptide elongation. J. Mol. Biol. 228, 7–12 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Komar, A.A., Lesnik, T. & Reiss, C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 462, 387–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Thanaraj, T.A. & Argos, P. Protein secondary structural types are differentially coded on messenger RNA. Protein Sci. 5, 1973–1983 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clarke, T.F., IV & Clark, P.L. Rare codons cluster. PLoS One 3, e3412 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Marin, M. Folding at the rhythm of the rare codon beat. Biotechnol. J. 3, 1047–1057 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dimitrova, L.N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gong, F. & Yanofsky, C. Instruction of translating ribosome by nascent peptide. Science 297, 1864–1867 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Nakatogawa, H. & Ito, K. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell 7, 185–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Butkus, M.E., Prundeanu, L.B. & Oliver, D.B. Translocon “pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J. Bacteriol. 185, 6719–6722 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woolhead, C.A., Johnson, A.E. & Bernstein, H.D. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol. Cell 22, 587–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Muto, H., Nakatogawa, H. & Ito, K. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol. Cell 22, 545–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Fang, P., Spevak, C.C., Wu, C. & Sachs, M.S. A nascent polypeptide domain that can regulate translation elongation. Proc. Natl. Acad. Sci. USA 101, 4059–4064 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bornemann, T., Jockel, J., Rodnina, M.V. & Wintermeyer, W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 15, 494–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Berndt, U., Oellerer, S., Zhang, Y., Johnson, A.E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl. Acad. Sci. USA 106, 1398–1403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Evans, M.S., Sander, I.M. & Clark, P.L. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo . J. Mol. Biol. 383, 683–692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martinez, A. et al. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8, 2809–2831 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Giglione, C., Boularot, A. & Meinnel, T. Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61, 1455–1474 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Meinnel, T. & Giglione, C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 8, 626–649 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ball, L.A. & Kaesberg, P. Cleavage of the N-terminal formylmethionine residue from a bacteriophage coat protein in vitro . J. Mol. Biol. 79, 531–537 (1973).

    Article  CAS  PubMed  Google Scholar 

  38. Raue, U., Oellerer, S. & Rospert, S. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 282, 7809–7816 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Vetro, J.A. & Chang, Y.H. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo . J. Cell. Biochem. 85, 678–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Zuo, S., Guo, Q., Ling, C. & Chang, Y.H. Evidence that two zinc fingers in the methionine aminopeptidase from Saccharomyces cerevisiae are important for normal growth. Mol. Gen. Genet. 246, 247–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Fry, K.T. & Lamborg, M.R. Amidohydrolase activity of Escherichia coli extracts with formylated amino acids and dipeptides as substrates. J. Mol. Biol. 28, 423–433 (1967).

    Article  CAS  PubMed  Google Scholar 

  42. Pine, M.J. Kinetics of maturation of the amino termini of the cell proteins of Escherichia coli . Biochim. Biophys. Acta 174, 359–372 (1969).

    Article  CAS  PubMed  Google Scholar 

  43. Adams, J.M. On the release of the formyl group from nascent protein. J. Mol. Biol. 33, 571–574 (1968).

    Article  CAS  PubMed  Google Scholar 

  44. Bingel-Erlenmeyer, R. et al. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature 452, 108–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Polevoda, B. & Sherman, F. Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem. Biophys. Res. Commun. 308, 1–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Yamada, R. & Bradshaw, R.A. Rat liver polysome N α-acetyltransferase: isolation and characterization. Biochemistry 30, 1010–1016 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Green, R.M., Elce, J.S. & Kisilevsky, R. Acetylation of peptidyl-tRNA on rat liver polyribosomes. Can. J. Biochem. 56, 1075–1081 (1978).

    Article  CAS  PubMed  Google Scholar 

  48. Pestana, A. & Pitot, H.C. Acetylation of nascent polypeptide chains on rat liver polyribosomes in vivo and in vitro . Biochemistry 14, 1404–1412 (1975).

    Article  CAS  PubMed  Google Scholar 

  49. Palmiter, R.D., Gagnon, J. & Walsh, K.A. Ovalbumin: a secreted protein without a transient hydrophobic leader sequence. Proc. Natl. Acad. Sci. USA 75, 94–98 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Polevoda, B., Brown, S., Cardillo, T.S., Rigby, S. & Sherman, F. Yeast Nα-terminal acetyltransferases are associated with ribosomes. J. Cell. Biochem. 103, 492–508 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Gautschi, M. et al. The yeast Nα-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 23, 7403–7414 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo . Nat. Struct. Mol. Biol. 16, 574–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Maier, R., Eckert, B., Scholz, C., Lilie, H. & Schmid, F.X. Interaction of Trigger factor with the ribosome. J. Mol. Biol. 326, 585–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Kaiser, C.M. et al. Real-time observation of Trigger factor function on translating ribosomes. Nature 444, 455–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Rutkowska, A. et al. Dynamics of Trigger factor interaction with translating ribosomes. J. Biol. Chem. 283, 4124–4132 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Raine, A., Lovmar, M., Wikberg, J. & Ehrenberg, M. Trigger factor binding to ribosomes with nascent peptide chains of varying lengths and sequences. J. Biol. Chem. 281, 28033–28038 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Maier, R., Scholz, C. & Schmid, F.X. Dynamic association of Trigger factor with protein substrates. J. Mol. Biol. 314, 1181–1190 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Patzelt, H. et al. Binding specificity of Escherichia coli Trigger factor. Proc. Natl. Acad. Sci. USA 98, 14244–14249 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deuerling, E. et al. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Mol. Microbiol. 47, 1317–1328 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Agashe, V.R. et al. Function of Trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Merz, F. et al. Molecular mechanism and structure of Trigger factor bound to the translating ribosome. EMBO J. 27, 1622–1632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schlünzen, F. et al. The binding mode of the Trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13, 1685–1694 (2005).

    Article  PubMed  CAS  Google Scholar 

  66. Baram, D. et al. Structure of Trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc. Natl. Acad. Sci. USA 102, 12017–12022 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoffmann, A. et al. Trigger factor forms a protective shield for nascent polypeptides at the ribosome. J. Biol. Chem. 281, 6539–6545 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Tomic, S., Johnson, A.E., Hartl, F.U. & Etchells, S.A. Exploring the capacity of Trigger factor to function as a shield for ribosome bound polypeptide chains. FEBS Lett. 580, 72–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Lakshmipathy, S.K. et al. Identification of nascent chain interaction sites on Trigger factor. J. Biol. Chem. 282, 12186–12193 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Scholz, C., Stoller, G., Zarnt, T., Fischer, G. & Schmid, F.X. Cooperation of enzymatic and chaperone functions of Trigger factor in the catalysis of protein folding. EMBO J. 16, 54–58 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kramer, G. et al. Functional dissection of Escherichia coli Trigger factor: unraveling the function of individual domains. J. Bacteriol. 186, 3777–3784 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Merz, F. et al. The C-terminal domain of E. coli Trigger factor represents the central module of its chaperone activity. J. Biol. Chem. 42, 31963–31971 (2006).

    Google Scholar 

  73. Wiedmann, B., Sakai, H., Davis, T.A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Pfund, C. et al. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 17, 3981–3989 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gautschi, M., Mun, A., Ross, S. & Rospert, S. A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. USA 99, 4209–4214 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wegrzyn, R.D. & Deuerling, E. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell. Mol. Life Sci. 62, 2727–2738 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Gautschi, M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. USA 98, 3762–3767 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hundley, H. et al. The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc. Natl. Acad. Sci. USA 99, 4203–4208 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan, W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809–4817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Albanèse, V., Yam, A.Y., Baughman, J., Parnot, C. & Frydman, J. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124, 75–88 (2006).

    Article  PubMed  CAS  Google Scholar 

  81. Nelson, R.J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E.A. The translation machinery and 70 kDa heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Peisker, K. et al. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19, 5279–5288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, P., Gautschi, M., Walter, W., Rospert, S. & Craig, E.A. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat. Struct. Mol. Biol. 12, 497–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Conz, C. et al. Functional characterization of the atypical Hsp70 subunit of yeast ribosome-associated complex. J. Biol. Chem. 282, 33977–33984 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Hundley, H.A., Walter, W., Bairstow, S. & Craig, E.A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Otto, H. et al. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. USA 102, 10064–10069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dragovic, Z., Shomura, Y., Tzvetkov, N., Hartl, F.U. & Bracher, A. Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biol. Chem. 387, 1593–1600 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Yam, A.Y., Albanese, V., Lin, H.T. & Frydman, J. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J. Biol. Chem. 280, 41252–41261 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M.P. & Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510–2518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sondermann, H. et al. Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 co-chaperone in Saccharomyces cerevisiae . J. Biol. Chem. 277, 33220–33227 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fünfschilling, U. & Rospert, S. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell 10, 3289–3299 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rospert, S., Dubaquie, Y. & Gautschi, M. Nascent-polypeptide-associated complex. Cell. Mol. Life Sci. 59, 1632–1639 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Spreter, T., Pech, M. & Beatrix, B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J. Biol. Chem. 280, 15849–15854 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Beatrix, B., Sakai, H. & Wiedmann, M. The α and β subunit of the nascent polypeptide-associated complex have distinct functions. J. Biol. Chem. 275, 37838–37845 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Wegrzyn, R.D. et al. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J. Biol. Chem. 281, 2847–2857 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Wiedmann, B., Sakai, H., Davis, T.A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Andersen, K.M., Semple, C.A. & Hartmann-Petersen, R. Characterisation of the nascent polypeptide-associated complex in fission yeast. Mol. Biol. Rep. 34, 275–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Reimann, B. et al. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15, 397–407 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Bloss, T.A., Witze, E.S. & Rothman, J.H. Suppression of CED-3-independent apoptosis by mitochondrial βNAC in Caenorhabditis elegans . Nature 424, 1066–1071 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Markesich, D.C., Gajewski, K.M., Nazimiec, M.E. & Beckingham, K. bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery* . Development 127, 559–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Deng, J.M. & Behringer, R.R. An insertional mutation in the BTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res. 4, 264–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Craig, E.A., Eisenman, H.C. & Hundley, H.A. Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? Curr. Opin. Microbiol. 6, 157–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Pool, M.R., Stumm, J., Fulga, T.A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Blau, M. et al. ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat. Struct. Mol. Biol. 12, 1015–1016 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Schaffitzel, C. et al. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444, 503–506 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Jia, L. et al. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22, 6438–6447 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Keenan, R.J., Freymann, D.M., Stroud, R.M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Skach, W.R. Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16, 606–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eisner, G., Koch, H.G., Beck, K., Brunner, J. & Muller, M. Ligand crowding at a nascent signal sequence. J. Cell Biol. 163, 35–44 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Eisner, G., Moser, M., Schafer, U., Beck, K. & Muller, M. Alternate recruitment of signal recognition particle and Trigger factor to the signal sequence of a growing nascent polypeptide. J. Biol. Chem. 281, 7172–7179 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Ullers, R.S. et al. Sequence-specific interactions of nascent Escherichia coli polypeptides with Trigger factor and signal recognition particle. J. Biol. Chem. 281, 13999–14005 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Ullers, R.S. et al. Interplay of signal recognition particle and Trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J. Cell Biol. 161, 679–684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Raine, A., Ivanova, N., Wikberg, J.E. & Ehrenberg, M. Simultaneous binding of Trigger factor and signal recognition particle to the E. coli ribosome. Biochimie 86, 495–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Valent, Q.A. et al. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and Trigger factor. Mol. Microbiol. 25, 53–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, H.C. & Bernstein, H.D. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl. Acad. Sci. USA 98, 3471–3476 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beck, K., Wu, L.F., Brunner, J. & Muller, M. Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and Trigger factor. EMBO J. 19, 134–143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, H.C. & Bernstein, H.D. Trigger factor retards protein export in Escherichia coli . J. Biol. Chem. 277, 43527–43535 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Ullers, R.S., Ang, D., Schwager, F., Georgopoulos, C. & Genevaux, P. Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli . Proc. Natl. Acad. Sci. USA 104, 3101–3106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Buskiewicz, I. et al. Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc. Natl. Acad. Sci. USA 101, 7902–7906 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Buskiewicz, I.A., Jockel, J., Rodnina, M.V. & Wintermeyer, W. Conformation of the signal recognition particle in ribosomal targeting complexes. RNA 15, 44–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lauring, B., Sakai, H., Kreibich, G. & Wiedmann, M. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 92, 5411–5415 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lauring, B., Kreibich, G. & Wiedmann, M. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc. Natl. Acad. Sci. USA 92, 9435–9439 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Möller, I. et al. A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc. Natl. Acad. Sci. USA 95, 13425–13430 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Bukau and Ban laboratories for critical reading of the manuscript. We acknowledge the help of Y. Cully, F. Gloge and A. Rutkowska in preparing parts of the figures. Work in the authors' laboratories is supported by grants from the Deutsche Forschungsgemeinschaft (DFG) to B.B. and G.K. (SFB 638, FOR967), the Swiss National Science Foundation (SNSF), the National Center of Excellence in Research (NCCR) Structural Biology programme of the SNSF and the ETH Research Grant TH-3/04-1 to N.B., and the Federation of European Biochemical Societies long-term fellowship to D.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Bukau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, G., Boehringer, D., Ban, N. et al. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16, 589–597 (2009). https://doi.org/10.1038/nsmb.1614

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1614

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing