Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1

A Corrigendum to this article was published on 06 April 2011

This article has been updated

Abstract

Polo-like kinase-1 (Plk1) has a pivotal role in cell proliferation and is considered a potential target for anticancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interact with the PBD of human PLK1, but not those of the closely related PLK2 and PLK3. Comparative binding studies and analyses of crystal structures of the PLK1 PBD in complex with the minimal phosphopeptides revealed that the C-terminal SpT dipeptide functions as a high-affinity anchor, whereas the N-terminal residues are crucial for providing specificity and affinity to the interaction. Inhibition of the PLK1 PBD by phosphothreonine mimetic peptides was sufficient to induce mitotic arrest and apoptotic cell death. The mode of interaction between the minimal peptide and PBD may provide a template for designing therapeutic agents that target PLK1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minimization of PBIP1 p-Thr78 peptide that binds to PLK1.
Figure 2: Minimal p-Thr78 peptides specifically bind to PLK1 with high affinity.
Figure 3: The nature of PBD binding and specificity.
Figure 4: A 5-mer p-Thr78 mimetic peptide (PLHS-Pmab) induces mitotic arrest by specifically inhibiting PLK1 localization.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 21 September 2010

    In the version of this article initially published, two of the numbers shown in Table 1 had the wrong sign. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Barr, F.A., Sillje, H.H. & Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  Google Scholar 

  2. van de Weerdt, B.C. & Medema, R.H. Polo-like kinases: a team in control of the division. Cell Cycle 5, 853–864 (2006).

    Article  CAS  Google Scholar 

  3. Lowery, D.M., Lim, D. & Yaffe, M.B. Structure and function of polo-like kinases. Oncogene 24, 248–259 (2005).

    Article  CAS  Google Scholar 

  4. Eckerdt, F., Yuan, J. & Strebhardt, K. Polo-like kinases and oncogenesis. Oncogene 24, 267–276 (2005).

    Article  CAS  Google Scholar 

  5. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 6, 321–330 (2006).

    Article  CAS  Google Scholar 

  6. Burns, T.F., Fei, P., Scata, K.A., Dicker, D.T. & El-Deiry, W.S. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol. Cell. Biol. 23, 5556–5571 (2003).

    Article  CAS  Google Scholar 

  7. Xie, S., Xie, B., Lee, M.Y. & Dai, W. Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24, 277–286 (2005).

    Article  Google Scholar 

  8. Jang, Y.J., Lin, C.Y., Ma, S. & Erikson, R.L. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl. Acad. Sci. USA 99, 1984–1989 (2002).

    Article  CAS  Google Scholar 

  9. Lee, K.S., Grenfell, T.Z., Yarm, F.R. & Erikson, R.L. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA 95, 9301–9306 (1998).

    Article  CAS  Google Scholar 

  10. Seong, Y.S. et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem. 277, 32282–32293 (2002).

    Article  CAS  Google Scholar 

  11. Elia, A.E., Cantley, L.C. & Yaffe, M.B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231 (2003).

    Article  CAS  Google Scholar 

  12. Cheng, K.Y., Lowe, E.D., Sinclair, J., Nigg, E.A. & Johnson, L.N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 22, 5757–5768 (2003).

    Article  CAS  Google Scholar 

  13. Elia, A.E. et al. The molecular basis for phospho-dependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  Google Scholar 

  14. Kang, Y.H. et al. Self-regulation of Plk1 recruitment to the kinetochores is critical for chromosome congression and spindle checkpoint signaling. Mol. Cell 24, 409–422 (2006).

    Article  CAS  Google Scholar 

  15. Minoshima, Y. et al. The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol. Cell. Biol. 25, 10315–10328 (2005).

    Article  CAS  Google Scholar 

  16. Foltz, D.R. et al. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8, 458–469 (2006).

    Article  CAS  Google Scholar 

  17. Okada, M. et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8, 446–457 (2006).

    Article  CAS  Google Scholar 

  18. Hanisch, A., Wehner, A., Nigg, E.A. & Sillje, H.H. Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell 17, 448–459 (2006).

    Article  CAS  Google Scholar 

  19. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  20. Elia, A.E. et al. The molecular basis for phospho-dependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  Google Scholar 

  21. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  22. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  23. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  24. McRee, D.E. XtalView/Xfit–A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F.J. Gonzalez, C. Vinson and S. Garfield for critical reading of the manuscript, and R. Erikson (Harvard University) and W. Dai (New York University School of Medicine) for reagents and helpful suggestions. This research was supported in part by the Intramural Research Program of the National Cancer Institute (E.A., J.B.M., M.C.N., T.R.B., A.W. and K.S.L.), National Institutes of Health grant R01 GM60594 (M.B.Y.), Korea Basic Science Institute project N28079 (J.K.B.), a Korean Ministry of Education grant (D.H.L.) and a Japanese government grant (A.O.). This project was funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400 and HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

K.S.L., T.M., D.L., J.-E.P., S.R.S., F.L., Y.H.K., A.W., M.B.Y. and T.R.B. designed the experiments; S.-M.Y., T.M., D.L., J.K.B., J.-E.P., S.R.S., F.L., Y.H.K., C.L., N.-K.S. and S.L. conducted the experiments; K.S.L., T.M., D.L., S.R.S., A.W., M.B.Y., T.R.B., J.B.M., D.-H.L., M.C.N., E.A., A.O., D.-Y.Y. and Y.L. analyzed the data; and K.S.L., T.M., D.L., S.R.S., A.W., M.B.Y., F.L. and T.R.B. wrote the paper.

Corresponding author

Correspondence to Kyung S Lee.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 10352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, SM., Moulaei, T., Lim, D. et al. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat Struct Mol Biol 16, 876–882 (2009). https://doi.org/10.1038/nsmb.1628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing