Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Insights into anaphase promoting complex TPR subdomain assembly from a CDC26–APC6 structure

Abstract

The multisubunit anaphase promoting complex (APC) is an essential cell-cycle regulator. Although CDC26 is known to have a role in APC assembly, its molecular function has remained unclear. Biophysical, structural and genetic studies presented here reveal that CDC26 stabilizes the structure of APC6, a core TPR protein required for APC integrity. Notably, CDC26–APC6 association involves an intermolecular TPR mimic composed of one helix from each protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CDC26 stabilizes APC6 structure.
Figure 2: CDC26N–APC6TPR interactions and yeast complementation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Dube, P. et al. Mol. Cell 20, 867–879 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Gieffers, C., Dube, P., Harris, J.R., Stark, H. & Peters, J.M. Mol. Cell 7, 907–913 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Han, D., Kim, K., Kim, Y., Kang, Y. & Lee, J.Y. J. Biol. Chem. 284, 15137–15146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohi, M.D. et al. Mol. Cell 28, 871–885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Passmore, L.A. et al. Mol. Cell 20, 855–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Thornton, B.R. et al. Genes Dev. 20, 449–460 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das, A.K., Cohen, P.T.W. & Barford, D. EMBO J. 17, 1192–1199 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cliff, M.J., Williams, M.A., Brooke-Smith, J., Barford, D. & Ladbury, J.E. J. Mol. Biol. 346, 717–732 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Yamada, H., Kumada, K. & Yanagida, M. J. Cell Sci. 110, 1793–1804 (1997).

    CAS  PubMed  Google Scholar 

  10. Yoon, H.J. et al. J. Biol. Chem. 281, 32284–32293 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Wehman, A.M., Staub, W. & Baier, H. Dev. Biol. 303, 144–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Araki, H., Awane, K., Ogawa, N. & Oshima, Y. Mol. Gen. Genet. 231, 329–331 (1992).

    CAS  PubMed  Google Scholar 

  13. Zachariae, W. et al. Science 279, 1216–1219 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Zachariae, W., Shin, T.H., Galova, M., Obermaier, B. & Nasmyth, K. Science 274, 1201–1204 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Groves, M.R. & Barford, D. Curr. Opin. Struct. Biol. 9, 383–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Lai, L.A., Morabito, L. & Holloway, S.L. Mol. Genet. Genomics 270, 156–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Samejima, I. & Yanagida, M. J. Cell Biol. 127, 1655–1670 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Q. et al. Oncogene 22, 1486–1490 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Matyskiela, M.E. & Morgan, D.O. Mol. Cell 34, 68–80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vodermaier, H.C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J.M. Curr. Biol. 13, 1459–1468 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to D. King (Howard Hughes Medical Institute Mass Spectrometry Laboratory), S. Otieno and R. Kriwacki for assistance with CD, C. Ross and D. Miller for computational support and D.W. Miller and S. Bozeman for administration. This work was funded by the American Lebanese Syrian Associated Charities (ALSAC), the US National Institutes of Health (NIH) (P30CA021765 to St. Jude Cancer Center), a Beckman Young Investigator Award to B.A.S. and the Howard Hughes Medical Institute. NECAT beamlines (Advanced Photon Source (APS)) are supported by RR-15301 from the National Center for Research Resources at NIH. APS is supported by the US Department of Energy, Office of Basic Energy Sciences, contract W-31-109-ENG-38. B.A.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.W. designed, performed and analyzed biochemical, biophysical and crystallography experiments and wrote the manuscript; B.T.D. designed, performed and analyzed biochemical and yeast genetic experiments and wrote the manuscript; K.R.R. and I.K. performed and analyzed crystallography experiments; B.A.S. advised on all aspects of the project and wrote the manuscript.

Corresponding author

Correspondence to Brenda A Schulman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 4843 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Dye, B., Rajashankar, K. et al. Insights into anaphase promoting complex TPR subdomain assembly from a CDC26–APC6 structure. Nat Struct Mol Biol 16, 987–989 (2009). https://doi.org/10.1038/nsmb.1645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1645

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing