Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Chromatin organization marks exon-intron structure

Abstract

An increasing body of evidence indicates that transcription and splicing are coupled, and it is accepted that chromatin organization regulates transcription. Little is known about the cross-talk between chromatin structure and exon-intron architecture. By analysis of genome-wide nucleosome-positioning data sets from humans, flies and worms, we found that exons show increased nucleosome-occupancy levels with respect to introns, a finding that we link to differential GC content and nucleosome-disfavoring elements between exons and introns. Analysis of genome-wide chromatin immunoprecipitation data in humans and mice revealed four specific post-translational histone modifications enriched in exons. Our findings indicate that previously described enrichment of H3K36me3 modifications in exons reflects a more fundamental phenomenon, namely increased nucleosome occupancy along exons. Our results suggest an RNA polymerase II–mediated cross-talk between chromatin structure and exon-intron architecture, implying that exon selection may be modulated by chromatin structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleosomes are preferentially positioned along exons.
Figure 2: Overlap between chromatin code and splicing code.
Figure 3: Post-translational histone modifications occurring along exons and analysis of factors correlating with nucleosome occupancy.
Figure 4: Positioning of nucleosomes along exons is a conserved phenomenon throughout the metazoan evolution.

Similar content being viewed by others

References

  1. Berget, S.M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Graveley, B.R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, C.W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Z. & Burge, C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Bernstein, B.E., Meissner, A. & Lander, E.S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Jones, P.A. & Baylin, S.B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Almeida, S.F. & Carmo-Fonseca, M. The CTD role in cotranscriptional RNA processing and surveillance. FEBS Lett. 582, 1971–1976 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Allemand, E., Batsche, E. & Muchardt, C. Splicing, transcription, and chromatin: a ménage à trois. Curr. Opin. Genet. Dev. 18, 145–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Moore, M.J. & Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Howe, K.J. RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim. Biophys. Acta 1577, 308–324 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Goldstrohm, A.C., Albrecht, T.R., Sune, C., Bedford, M.T. & Garcia-Blanco, M.A. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol. Cell. Biol. 21, 7617–7628 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Kornblihtt, A.R. Chromatin, transcript elongation and alternative splicing. Nat. Struct. Mol. Biol. 13, 5–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Schor, I.E., Rascovan, N., Pelisch, F., Allo, M. & Kornblihtt, A.R. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl. Acad. Sci. USA 106, 4325–4330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nogues, G., Kadener, S., Cramer, P., Bentley, D. & Kornblihtt, A.R. Transcriptional activators differ in their abilities to control alternative splicing. J. Biol. Chem. 277, 43110–43114 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Batsché, E., Yaniv, M. & Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13, 22–29 (2006).

    Article  PubMed  Google Scholar 

  22. Kress, T.L., Krogan, N.J. & Guthrie, C. A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast. Mol. Cell 32, 727–734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loomis, R.J. et al. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol. Cell 33, 450–461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sims, R.J. III et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jobert, L. et al. Human U1 snRNA forms a new chromatin-associated snRNP with TAF15. EMBO Rep. 10, 494–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schones, D.E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. & Lieb, J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hillier, L.W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5, 183–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Valouev, A. et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Field, Y. et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLOS Comput. Biol. 4, e1000216 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schwartz, S.H. et al. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res. 18, 88–103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fairbrother, W.G., Yeh, R.F., Sharp, P.A. & Burge, C.B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Goren, A. et al. Comparative analysis identifies exonic splicing regulatory sequences—the complex definition of enhancers and silencers. Mol. Cell 22, 769–781 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Voelker, R.B. & Berglund, J.A. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing. Genome Res. 17, 1023–1033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Z. et al. Systematic identification and analysis of exonic splicing silencers. Cell 119, 831–845 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Yeo, G.W., Van Nostrand, E.L. & Liang, T.Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 3, e85 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jothi, R., Cuddapah, S., Barski, A., Cui, K. & Zhao, K. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36, 5221–5231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bell, O. et al. Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO J. 26, 4974–4984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Du, H.N., Fingerman, I.M. & Briggs, S.D. Histone H3 K36 methylation is mediated by a trans-histone methylation pathway involving an interaction between Set2 and histone H4. Genes Dev. 22, 2786–2798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brodsky, A.S. et al. Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol. 6, R64 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kornblihtt, A.R. Coupling transcription and alternative splicing. Adv. Exp. Med. Biol. 623, 175–189 (2007).

    Article  PubMed  Google Scholar 

  49. Ram, O. & Ast, G. SR proteins: a foot on the exon before the transition from intron to exon definition. Trends Genet. 23, 5–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Robberson, B.L., Cote, G.J. & Berget, S.M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10, 84–94 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Talasz, H., Lindner, H.H., Sarg, B. & Helliger, W. Histone H4-lysine 20 monomethylation is increased in promoter and coding regions of active genes and correlates with hyperacetylation. J. Biol. Chem. 280, 38814–38822 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Vakoc, C.R., Sachdeva, M.M., Wang, H. & Blobel, G.A. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell. Biol. 26, 9185–9195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edmunds, J.W., Mahadevan, L.C. & Clayton, A.L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Kogan, S. & Trifonov, E.N. Gene splice sites correlate with nucleosome positions. Gene 352, 57–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Beckmann, J.S. & Trifonov, E.N. Splice junctions follow a 205-base ladder. Proc. Natl. Acad. Sci. USA 88, 2380–2383 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.1658 (16 August 2009).

  57. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Schones (Laboratory of Molecular Immunology, US National Heart, Lung and Blood Institute) and Y. Field (Weizmann Institute of Science) for sharing data sets, E. Segal (Weizmann Institute of Science) and M. Kupiec (Tel Aviv University) for critical review of the manuscript, and B. Zornberg for inspiration. S.S. is a fellow of the Edmond J. Safra bioinformatic program at Tel Aviv University. G.A. is supported by a grant from the Israel Science Foundation (ISF 61/09), Joint Germany-Israeli Research Program (ca-139), Deutsche-Israel Project (DIP MI-1317), and European Alternative Splicing Network (EURASNET). E.M. is supported by the Israel Science Foundation (ISF 215/07), the European Union (IRG-206872) and an Alon fellowship. This work was performed in partial fulfillment of the requirements for a Ph.D. degree of S.S., Sackler Faculty of Medicine, Tel Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Ast.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2, Supplementary Methods and Supplementary Results (PDF 1011 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16, 990–995 (2009). https://doi.org/10.1038/nsmb.1659

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1659

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing