Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interactions between lipids and voltage sensor paddles detected with tarantula toxins

Abstract

Voltage-activated ion channels open and close in response to changes in voltage, a property that is essential for generating nerve impulses. Studies on voltage-activated potassium (Kv) channels show that voltage-sensor activation is sensitive to the composition of lipids in the surrounding membrane. Here we explore the interaction of lipids with S1–S4 voltage-sensing domains and find that the conversion of the membrane lipid sphingomyelin to ceramide-1-phosphate alters voltage-sensor activation in an S1–S4 voltage-sensing protein lacking an associated pore domain, and that the S3b–S4 paddle motif determines the effects of lipid modification on Kv channels. Using tarantula toxins that bind to paddle motifs within the membrane, we identify mutations in the paddle motif that weaken toxin binding by disrupting lipid-paddle interactions. Our results suggest that lipids bind to voltage-sensing domains and demonstrate that the pharmacological sensitivities of voltage-activated ion channels are influenced by the surrounding lipid membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane modification alters gating of voltage-activated ion channels and a voltage-activated phosphatase.
Figure 2: Membrane modification alters the apparent affinity of tarantula toxins for Kv channels without altering membrane partitioning.
Figure 3: Comparison of the effects of Kv2.1 paddle mutations on GxTx-1E affinity before and after membrane modification with SMaseD.
Figure 4: Coupling energies mapped onto the X-ray structure of a Kv channel (PDB 2R9R)41 and a model for how lipid modification alters toxin affinity.
Figure 5: Model illustrating toxin binding to lipid-associated paddle motifs.

Similar content being viewed by others

References

  1. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  Google Scholar 

  2. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  3. Swartz, K.J. Sensing voltage across lipid membranes. Nature 456, 891–897 (2008).

    Article  CAS  Google Scholar 

  4. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  Google Scholar 

  5. Schmidt, D., Jiang, Q.X. & MacKinnon, R. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444, 775–779 (2006).

    Article  CAS  Google Scholar 

  6. Ramu, Y., Xu, Y. & Lu, Z. Enzymatic activation of voltage-gated potassium channels. Nature 442, 696–699 (2006).

    Article  CAS  Google Scholar 

  7. Xu, Y., Ramu, Y. & Lu, Z. Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451, 826–829 (2008).

    Article  CAS  Google Scholar 

  8. Alabi, A.A., Bahamonde, M.I., Jung, H.J., Kim, J.I. & Swartz, K.J. Portability of paddle motif function and pharmacology in voltage sensors. Nature 450, 370–375 (2007).

    Article  CAS  Google Scholar 

  9. Milescu, M. et al. Tarantula toxins interact with voltage sensors within lipid membranes. J. Gen. Physiol. 130, 497–511 (2007).

    Article  CAS  Google Scholar 

  10. Schmidt, D. & Mackinnon, R. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proc. Natl. Acad. Sci. USA 105, 19276–19281 (2008).

    Article  CAS  Google Scholar 

  11. Kamb, A., Tseng-Crank, J. & Tanouye, M.A. Multiple products of the Drosophila Shaker gene may contribute to potassium channel diversity. Neuron 1, 421–430 (1988).

    Article  CAS  Google Scholar 

  12. Frech, G.C., VanDongen, A.M., Schuster, G., Brown, A.M. & Joho, R.H. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340, 642–645 (1989).

    Article  CAS  Google Scholar 

  13. Palsdottir, H. & Hunte, C. Lipids in membrane protein structures. Biochim. Biophys. Acta 1666, 2–18 (2004).

    Article  CAS  Google Scholar 

  14. Lee, A.G. Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003).

    Article  CAS  Google Scholar 

  15. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  Google Scholar 

  16. Villalba-Galea, C.A., Sandtner, W., Starace, D.M. & Bezanilla, F. S4-based voltage sensors have three major conformations. Proc. Natl. Acad. Sci. USA 105, 17600–17607 (2008).

    Article  CAS  Google Scholar 

  17. Villalba-Galea, C.A., Miceli, F., Taglialatela, M. & Bezanilla, F. Coupling between the voltage-sensing and phosphatase domains of Ci-VSP. J. Gen. Physiol. 134, 5–14 (2009).

    Article  CAS  Google Scholar 

  18. Cuello, L.G., Cortes, D.M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306, 491–495 (2004).

    Article  CAS  Google Scholar 

  19. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005).

    Article  CAS  Google Scholar 

  20. Banerjee, A. & MacKinnon, R. Inferred motions of the S3a helix during voltage-dependent K+ channel gating. J. Mol. Biol. 381, 569–580 (2008).

    Article  CAS  Google Scholar 

  21. Bosmans, F., Martin-Eauclaire, M.F. & Swartz, K.J. Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456, 202–208 (2008).

    Article  CAS  Google Scholar 

  22. Chakrapani, S., Cuello, L.G., Cortes, D.M. & Perozo, E. Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure 16, 398–409 (2008).

    Article  CAS  Google Scholar 

  23. Trimmer, J.S. et al. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3, 33–49 (1989).

    Article  CAS  Google Scholar 

  24. Lee, S.Y. & MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004).

    Article  CAS  Google Scholar 

  25. Jung, H.J. et al. Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. Biochemistry 44, 6015–6023 (2005).

    Article  CAS  Google Scholar 

  26. Phillips, L.R. et al. Voltage-sensor activation with a tarantula toxin as cargo. Nature 436, 857–860 (2005).

    Article  CAS  Google Scholar 

  27. Swartz, K.J. & MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682 (1997b).

    Article  CAS  Google Scholar 

  28. Li-Smerin, Y., Hackos, D.H. & Swartz, K.J. α-Helical structural elements within the voltage-sensing domains of a K+ channel. J. Gen. Physiol. 115, 33–50 (2000a).

    Article  CAS  Google Scholar 

  29. Li-Smerin, Y. & Swartz, K.J. Helical structure of the COOH terminus of S3 and its contribution to the gating modifier toxin receptor in voltage-gated ion channels. J. Gen. Physiol. 117, 205–218 (2001).

    Article  CAS  Google Scholar 

  30. Herrington, J. et al. Blockers of the delayed-rectifier potassium current in pancreatic β-cells enhance glucose-dependent insulin secretion. Diabetes 55, 1034–1042 (2006).

    Article  CAS  Google Scholar 

  31. Ruta, V., Jiang, Y., Lee, A., Chen, J. & MacKinnon, R. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422, 180–185 (2003).

    Article  CAS  Google Scholar 

  32. Middleton, R.E. et al. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41, 14734–14747 (2002).

    Article  CAS  Google Scholar 

  33. Li-Smerin, Y. & Swartz, K.J. Localization and molecular determinants of the hanatoxin receptors on the voltage-sensing domain of a K+ channel. J. Gen. Physiol. 115, 673–684 (2000).

    Article  CAS  Google Scholar 

  34. Hidalgo, P. & MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268, 307–310 (1995).

    Article  CAS  Google Scholar 

  35. Schreiber, G. & Fersht, A.R. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J. Mol. Biol. 248, 478–486 (1995).

    CAS  PubMed  Google Scholar 

  36. Martens, J.R. et al. Differential targeting of Shaker-like potassium channels to lipid rafts. J. Biol. Chem. 275, 7443–7446 (2000).

    Article  CAS  Google Scholar 

  37. Nguyen, T.P. & Horn, R. Movement and crevices around a sodium channel S3 segment. J. Gen. Physiol. 120, 419–436 (2002).

    Article  CAS  Google Scholar 

  38. Gandhi, C.S., Clark, E., Loots, E., Pralle, A. & Isacoff, E.Y. The orientation and molecular movement of a K+ channel voltage-sensing domain. Neuron 40, 515–525 (2003).

    Article  CAS  Google Scholar 

  39. Darman, R.B., Ivy, A.A., Ketty, V. & Blaustein, R.O. Constraints on voltage sensor movement in the Shaker K+ channel. J. Gen. Physiol. 128, 687–699 (2006).

    Article  CAS  Google Scholar 

  40. Soler-Llavina, G.J., Chang, T.H. & Swartz, K.J. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker Kv channel. Neuron 52, 623–634 (2006).

    Article  CAS  Google Scholar 

  41. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  42. Mahfoud, R. et al. Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J. Biol. Chem. 277, 11292–11296 (2002).

    Article  CAS  Google Scholar 

  43. Snook, C.F., Jones, J.A. & Hannun, Y.A. Sphingolipid-binding proteins. Biochim. Biophys. Acta 1761, 927–946 (2006).

    Article  CAS  Google Scholar 

  44. Swartz, K.J. & MacKinnon, R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18, 665–673 (1997a).

    Article  CAS  Google Scholar 

  45. Lee, H.C., Wang, J.M. & Swartz, K.J. Interaction between extracellular Hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron 40, 527–536 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Holmgren, J. Kumar, M. Mayer, J. Mindell, S. Silberberg and members of the Swartz laboratory for helpful discussions and the US National Institute of Neurological Disorders and Stroke (NINDS) DNA sequencing facility for DNA sequencing. We thank Y. Okamura (Okazaki Center for Integrative Biosciences) for providing Ci-VSP complementary DNA, Y. Xu and Z. Lu (University of Pennsylvania) for supplying recombinant SMaseD and W. Schmalhofer and M. Garcia (Merck Research Labs) for supplying 125I-GxTx-1E. This work was supported by the Intramural Research Program of the NINDS, National Insitutes of Health (NIH) (to K.J.S.) and by an NIH-FWO postdoctoral fellowship (to F.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.M., F.B. and A.A.A. performed molecular biology and electrophysiology experiments, and S.L. synthesized GxTx-1E. All authors contributed to the study design and to writing the manuscript.

Corresponding authors

Correspondence to Mirela Milescu or Kenton J Swartz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 5807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milescu, M., Bosmans, F., Lee, S. et al. Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol 16, 1080–1085 (2009). https://doi.org/10.1038/nsmb.1679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing