Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physical determinants of strong voltage sensitivity of K+ channel block

Abstract

Strong voltage sensitivity of inward-rectifier K+ (Kir) channels has been hypothesized to arise primarily from an intracellular blocker displacing up to five K+ ions from the wide, intracellular part of the ion conduction pore outwardly across the narrow ion-selectivity filter. The validity of this hypothesis depends on two assumptions: (i) that five ion sites are located intracellular to the filter and (ii) that the blocker can force essentially unidirectional K+ movement in a pore region generally wider than the combined dimensions of the blocker plus a K+ ion. Here we present a crystal structure of the cytoplasmic portion of a Kir channel with five ions bound and demonstrate that a constriction near the intracellular end of the pore, acting as a gasket, prevents K+ ions from bypassing the blocker. This heretofore unrecognized 'gasket' ensures that the blocker can effectively displace K+ ions across the selectivity filter to generate exceedingly strong voltage sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetic scheme and Kir structure.
Figure 2: Crystal structure model of the cytoplasmic pore.
Figure 3: Ions and surrounding water molecules.
Figure 4: Effects of mutations at Phe254 on spermine block of Kir2.1 channels.
Figure 5: Identification of mutations in M2 that affect spermine affinity of the deep site in Kir2.1.
Figure 6: A quintuple mutation abolishes spermine block of Kir2.1.
Figure 7: Deleting the cytoplasmic loop lowers the valence of Kir2.1 block.
Figure 8: Structural comparison of the isolated Kir3.1 cytoplasmic pore and the Kir chimera.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hille, B. Ion Channels of Excitable Membranes 3rd ed. (Sinauer, Sunderland, Massachusetts, USA, 2001).

  2. Katz, B. Les constantes électriques de la membrane du muscle. Arch. Sci. Physiol. (Paris) 3, 285–299 (1949).

    CAS  Google Scholar 

  3. Noble, D. Electrical properties of cardiac muscle attributable to inward going (anomalous) rectification. J. Cell. Comp. Physiol. 66, 127–136 (1965).

    Article  Google Scholar 

  4. Lopatin, A.N., Makhina, E.N. & Nichols, C.G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).

    Article  CAS  Google Scholar 

  5. Ficker, E., Taglialatela, M., Wible, B.A., Henley, C.M. & Brown, A.M. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266, 1068–1072 (1994).

    Article  CAS  Google Scholar 

  6. Fakler, B. et al. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell 80, 149–154 (1995).

    Article  CAS  Google Scholar 

  7. Woodhull, A.M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  8. Guo, D., Ramu, Y., Klem, A.M. & Lu, Z. Mechanism of rectification in inward-rectifier K+ channels. J. Gen. Physiol. 121, 261–275 (2003).

    Article  CAS  Google Scholar 

  9. Shin, H.G. & Lu, Z. Mechanism of the voltage sensitivity of IRK1 inward-rectifier K+ channel block by the polyamine spermine. J. Gen. Physiol. 125, 413–426 (2005).

    Article  CAS  Google Scholar 

  10. Armstrong, C.M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  Google Scholar 

  11. Spassova, M. & Lu, Z. Coupled ion movement underlies rectification in an inward-rectifier K+ channel. J. Gen. Physiol. 112, 211–221 (1998).

    Article  CAS  Google Scholar 

  12. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  CAS  Google Scholar 

  13. Nishida, M., Cadene, M., Chait, B.T. & MacKinnon, R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 26, 4005–4015 (2007).

    Article  CAS  Google Scholar 

  14. Nishida, M. & MacKinnon, R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111, 957–965 (2002).

    Article  CAS  Google Scholar 

  15. Pegan, S. et al. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat. Neurosci. 8, 279–287 (2005).

    Article  CAS  Google Scholar 

  16. Yang, J., Jan, Y.N. & Jan, L.Y. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14, 1047–1054 (1995).

    Article  CAS  Google Scholar 

  17. Taglialatela, M., Ficker, E., Wible, B.A. & Brown, A.M. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO J. 14, 5532–5541 (1995).

    Article  CAS  Google Scholar 

  18. Guo, D. & Lu, Z. Interaction mechanisms between polyamines and IRK1 inward rectifier K+ channels. J. Gen. Physiol. 122, 485–500 (2003).

    Article  CAS  Google Scholar 

  19. Harding, M.M. Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr. D Biol. Crystallogr. 62, 678–682 (2006).

    Article  Google Scholar 

  20. Lopatin, A.N., Makhina, E.N. & Nichols, C.G. The mechanism of inward rectification of potassium channels: “long-pore plugging” by cytoplasmic polyamines. J. Gen. Physiol. 106, 923–955 (1995).

    Article  CAS  Google Scholar 

  21. Shin, H.G., Xu, Y. & Lu, Z. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel. J. Gen. Physiol. 126, 123–135 (2005).

    Article  CAS  Google Scholar 

  22. Stanfield, P.R. et al. A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. J. Physiol. (Lond.) 478, 1–6 (1994).

    Article  CAS  Google Scholar 

  23. Lu, Z. & MacKinnon, R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371, 243–246 (1994).

    Article  CAS  Google Scholar 

  24. Wible, B.A., Taglialatela, M., Ficker, E. & Brown, A.M. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature 371, 246–249 (1994).

    Article  CAS  Google Scholar 

  25. Kubo, Y. & Murata, Y. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. J. Physiol. (Lond.) 531, 645–660 (2001).

    Article  CAS  Google Scholar 

  26. Stampe, P., Arreola, J., Perez-Cornejo, P. & Begenisich, T. Nonindependent K+ movement through the pore in IRK1 potassium channels. J. Gen. Physiol. 112, 475–484 (1998).

    Article  CAS  Google Scholar 

  27. French, R.J. & Shoukimas, J.J. Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various sizes. Biophys. J. 34, 271–291 (1981).

    Article  CAS  Google Scholar 

  28. Yellen, G., Jurman, M.E., Abramson, T. & MacKinnon, R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251, 939–942 (1991).

    Article  CAS  Google Scholar 

  29. Choi, K.L., Mossman, C., Aube, J. & Yellen, G. The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10, 533–541 (1993).

    Article  CAS  Google Scholar 

  30. Holmgren, M., Smith, P.L. & Yellen, G. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating. J. Gen. Physiol. 109, 527–535 (1997).

    Article  CAS  Google Scholar 

  31. Zhou, M., Morais-Cabral, J.H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  Google Scholar 

  32. Guo, D. & Lu, Z. Mechanism of IRK1 channel block by intracellular polyamines. J. Gen. Physiol. 115, 799–814 (2000).

    Article  CAS  Google Scholar 

  33. Kurata, H.T. et al. Molecular basis of inward rectification: polyamine interaction sites located by combined channel and ligand mutagenesis. J. Gen. Physiol. 124, 541–554 (2004).

    Article  CAS  Google Scholar 

  34. Kurata, H.T., Marton, L.J. & Nichols, C.G. The polyamine binding site in inward rectifier K+ channels. J. Gen. Physiol. 127, 467–480 (2006).

    Article  CAS  Google Scholar 

  35. Heginbotham, L. & MacKinnon, R. The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483–491 (1992).

    Article  CAS  Google Scholar 

  36. Kavanaugh, M.P. et al. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Neuron 8, 493–497 (1992).

    Article  CAS  Google Scholar 

  37. Lenaeus, M.J., Vamvouka, M., Focia, P.J. & Gross, A. Structural basis of TEA blockade in a model potassium channel. Nat. Struct. Mol. Biol. 12, 454–459 (2005).

    Article  CAS  Google Scholar 

  38. Ahern, C.A., Eastwood, A.L., Lester, H.A., Dougherty, D.A. & Horn, R. A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels. J. Gen. Physiol. 128, 649–657 (2006).

    Article  CAS  Google Scholar 

  39. Burley, S.K. & Petsko, G.A. Amino-aromatic interactions in proteins. FEBS Lett. 203, 139–143 (1986).

    Article  CAS  Google Scholar 

  40. Bremi, T., Ernst, M. & Ernst, R.R. Side-chain motion with two degrees of freedom in peptides. An NMR study of phenylalanine side chains in antamanide. J. Phys. Chem. 98, 9322–9334 (1994).

    Article  CAS  Google Scholar 

  41. Hodgkin, A.L. & Horowicz, P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. (Lond.) 148, 127–160 (1959).

    Article  CAS  Google Scholar 

  42. Hagiwara, S. & Takahashi, K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J. Membr. Biol. 18, 61–80 (1974).

    Article  CAS  Google Scholar 

  43. Leech, C.A. & Stanfield, P.R. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J. Physiol. (Lond.) 319, 295–309 (1981).

    Article  CAS  Google Scholar 

  44. Hagiwara, S. & Yoshii, M. Effects of internal potassium and sodium on the anomalous rectification of the starfish egg as examined by internal perfusion. J. Physiol. (Lond.) 292, 251–265 (1979).

    Article  CAS  Google Scholar 

  45. Lu, Z. Mechanism of rectification in inward-rectifier K+ channels. Annu. Rev. Physiol. 66, 103–129 (2004).

    Article  CAS  Google Scholar 

  46. Kubo, Y., Baldwin, T.J., Jan, Y.N. & Jan, L.Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362, 127–133 (1993).

    Article  CAS  Google Scholar 

  47. Liman, E.R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861–871 (1992).

    Article  CAS  Google Scholar 

  48. Kubo, Y., Reuveny, E., Slesinger, P.A., Jan, Y.N. & Jan, L.Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806 (1993).

    Article  CAS  Google Scholar 

  49. Dascal, N. et al. Expression of an atrial G-protein-activated potassium channel in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 90, 6596–6600 (1993).

    Article  CAS  Google Scholar 

  50. Guo, D. & Lu, Z. Pore block versus intrinsic gating in the mechanism of inward rectification in strongly rectifying IRK1 channels. J. Gen. Physiol. 116, 561–568 (2000).

    Article  CAS  Google Scholar 

  51. Guo, D. & Lu, Z. IRK1 inward rectifier K+ channels exhibit no intrinsic rectification. J. Gen. Physiol. 120, 539–551 (2002).

    Article  CAS  Google Scholar 

  52. Huang, C.L., Feng, S. & Hilgemann, D.W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    Article  CAS  Google Scholar 

  53. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  54. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  55. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (2004).

    Article  Google Scholar 

  56. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Crystallographica Section D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  58. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  59. Laskowski, R.A., MacArthur, M.W., Moss, D. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Jan (University of California, San Francisco) for sharing Kir2.1 and Kir3.1 cDNAs, J. Yang (Columbia University) for Kir2.1 cDNA in the pGEM-Hess vector; R. MacKinnon (Rockefeller University) for Kir3.1 cytoplasmic pore cDNA construct and for teaching molecular replacement method to Z.L.; K. Baek, R. Dominguez, K. Ferguson, S. Lee, S. Li, K. Schmitz and Y. Zhou for technical assistance and/or discussion, staff at CHESS A1 and NSLS X25 for technical service; and P. De Weer for review and discussion of our manuscript. This study was supported by a grant (GM55560) from the US National Institutes of Health and by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Y.X., H.-G.S. and Z.L. performed the experiments; Y.X., H.-G.S., S.S. and Z.L. analyzed the data; Y.X. and Z.L. wrote the manuscript.

Corresponding author

Correspondence to Zhe Lu.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Shin, HG., Szép, S. et al. Physical determinants of strong voltage sensitivity of K+ channel block. Nat Struct Mol Biol 16, 1252–1258 (2009). https://doi.org/10.1038/nsmb.1717

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing