Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SF2/ASF autoregulation involves multiple layers of post-transcriptional and translational control

Abstract

SF2/ASF is a prototypical serine- and arginine-rich protein, with important roles in splicing and other aspects of mRNA metabolism. Splicing factor, arginine/serine-rich 1 (SFRS1), the gene encoding SF2/ASF, is a potent proto-oncogene with abnormal expression in many tumors. We found that SF2/ASF negatively autoregulates its expression to maintain homeostatic levels. We characterized six alternatively spliced SF2/ASF mRNA isoforms: the major isoform encodes full-length protein, whereas the others are either retained in the nucleus or degraded by nonsense-mediated mRNA decay. Unproductive splicing accounts for only part of the autoregulation, which occurs primarily at the translational level. The effect is specific to SF2/ASF and requires RNA recognition motif 2 (RRM2). The ultraconserved 3′ untranslated region (UTR) is necessary and sufficient for downregulation. SF2/ASF overexpression shifts the distribution of target mRNA toward monoribosomes, and translational repression is partly independent of Dicer and a 5′ cap. Thus, multiple post-transcriptional and translational mechanisms are involved in fine-tuning the expression of SF2/ASF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HeLa tet-off cells with inducible SF2/ASF overexpression.
Figure 2: Alternative splicing of SF2/ASF.
Figure 3: Expression of SF2/ASF from a genomic construct.
Figure 4: The 3′ UTR is necessary and sufficient for SF2/ASF autoregulation.
Figure 5: SF2/ASF reduces the polysome association of its own mRNA.
Figure 6: IRES-dependent translation assay.

Similar content being viewed by others

References

  1. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  Google Scholar 

  2. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298 (2002).

    Article  CAS  Google Scholar 

  3. Zhang, Z. & Krainer, A.R. Involvement of SR proteins in mRNA surveillance. Mol. Cell 16, 597–607 (2004).

    Article  CAS  Google Scholar 

  4. Huang, Y., Gattoni, R., Stévenin, J. & Steitz, J.A. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell 11, 837–843 (2003).

    Article  CAS  Google Scholar 

  5. Lai, M.C. & Tarn, W.Y. Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. J. Biol. Chem. 279, 31745–31749 (2004).

    Article  CAS  Google Scholar 

  6. Sanford, J.R., Gray, N.K., Beckmann, K. & Cáceres, J.F. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 18, 755–768 (2004).

    Article  CAS  Google Scholar 

  7. Hanamura, A., Cáceres, J.F., Mayeda, A., Franza, B.R. Jr. & Krainer, A.R. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4, 430–444 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, X. & Manley, J.L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  Google Scholar 

  9. Li, X., Wang, J. & Manley, J.L. Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev. 19, 2705–2714 (2005).

    Article  CAS  Google Scholar 

  10. Xu, X. et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72 (2005).

    Article  CAS  Google Scholar 

  11. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  Google Scholar 

  12. Ghigna, C. et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol. Cell 20, 881–890 (2005).

    Article  CAS  Google Scholar 

  13. McGlincy, N.J. & Smith, C.W. Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem. Sci. 33, 385–393 (2008).

    Article  CAS  Google Scholar 

  14. Barreau, C., Paillard, L. & Osborne, H.B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138–7150 (2005).

    Article  CAS  Google Scholar 

  15. Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    Article  CAS  Google Scholar 

  16. Morrison, M., Harris, K.S. & Roth, M.B. smg mutants affect the expression of alternatively spliced SR protein mRNAs in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94, 9782–9785 (1997).

    Article  CAS  Google Scholar 

  17. Sureau, A., Gattoni, R., Dooghe, Y., Stévenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 20, 1785–1796 (2001).

    Article  CAS  Google Scholar 

  18. Wollerton, M.C., Gooding, C., Wagner, E.J., Garcia-Blanco, M.A. & Smith, C.W. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

    Article  CAS  Google Scholar 

  19. Jumaa, H. & Nielsen, P.J. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J. 16, 5077–5085 (1997).

    Article  CAS  Google Scholar 

  20. Lareau, L.F., Inada, M., Green, R.E., Wengrod, J.C. & Brenner, S.E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).

    Article  CAS  Google Scholar 

  21. Ni, J.Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).

    Article  CAS  Google Scholar 

  22. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  Google Scholar 

  23. Sandelin, A. et al. Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes. BMC Genomics 5, 99 (2004).

    Article  Google Scholar 

  24. Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    Article  CAS  Google Scholar 

  25. Ge, H., Zuo, P. & Manley, J.L. Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators. Cell 66, 373–382 (1991).

    Article  CAS  Google Scholar 

  26. Krainer, A.R., Mayeda, A., Kozak, D. & Binns, G. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell 66, 383–394 (1991).

    Article  CAS  Google Scholar 

  27. Isken, O. & Maquat, L.E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    Article  CAS  Google Scholar 

  28. Tanguay, R.L. & Gallie, D.R. Translational efficiency is regulated by the length of the 3′ untranslated region. Mol. Cell. Biol. 16, 146–156 (1996).

    Article  CAS  Google Scholar 

  29. Pestova, P.V., Lorsch, J.R. & Hellen, C. The mechanism of translation initiation in eukaryotes. in Translational Control in Biology and Medicine (eds. Mathews, M., Sonenberg, N. & Hershey, J.) 87–128 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2007).

  30. Bergamini, G., Preiss, T. & Hentze, M.W. Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA 6, 1781–1790 (2000).

    Article  CAS  Google Scholar 

  31. Murchison, E.P. & Hannon, G.J. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16, 223–229 (2004).

    Article  CAS  Google Scholar 

  32. Cummins, J.M. et al. The colorectal microRNAome. Proc. Natl. Acad. Sci. USA 103, 3687–3692 (2006).

    Article  CAS  Google Scholar 

  33. Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S. & Hannon, G.J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. USA 102, 12135–12140 (2005).

    Article  CAS  Google Scholar 

  34. Doudna, J.A. & Sarnow, P. Translation initiation by viral internal ribosome entry sites. in Translational Control in Biology and Medicine (eds. Mathews, M., Sonenberg, N. & Hershey, J.) 129–154 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2007).

  35. Isken, O. et al. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133, 314–327 (2008).

    Article  CAS  Google Scholar 

  36. Boutz, P.L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).

    Article  CAS  Google Scholar 

  37. Makeyev, E.V., Zhang, J., Carrasco, M.A. & Maniatis, T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007).

    Article  CAS  Google Scholar 

  38. Boutz, P.L., Chawla, G., Stoilov, P. & Black, D.L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71–84 (2007).

    Article  CAS  Google Scholar 

  39. Tacke, R., Boned, A. & Goridis, C. ASF alternative transcripts are highly conserved between mouse and man. Nucleic Acids Res. 20, 5482 (1992).

    Article  CAS  Google Scholar 

  40. Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327 (2003).

    Article  CAS  Google Scholar 

  41. Li, Y. et al. An Intron with a constitutive transport element is retained in a Tap messenger RNA. Nature 443, 234–237 (2006).

    Article  CAS  Google Scholar 

  42. Moore, M.J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  Google Scholar 

  43. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  Google Scholar 

  44. Giorgi, C. & Moore, M.J. The nuclear nurture and cytoplasmic nature of localized mRNPs. Semin. Cell Dev. Biol. 18, 186–193 (2007).

    Article  CAS  Google Scholar 

  45. Michlewski, G., Sanford, J.R. & Céceres, J.F. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E–BP1. Mol. Cell 30, 179–189 (2008).

    Article  CAS  Google Scholar 

  46. Sanford, J.R. et al. Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF. PLoS One 3, e3369 (2008).

    Article  Google Scholar 

  47. Cáceres, J.F., Misteli, T., Screaton, G.R., Spector, D.L. & Krainer, A.R. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J. Cell Biol. 138, 225–238 (1997).

    Article  Google Scholar 

  48. Cazalla, D. et al. Nuclear export and retention signals in the RS domain of SR proteins. Mol. Cell. Biol. 22, 6871–6882 (2002).

    Article  CAS  Google Scholar 

  49. Durocher, Y., Perret, S. & Kamen, A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 30, E9 (2002).

    Article  Google Scholar 

  50. Bor, Y.C. et al. Northern blot analysis of mRNA from mammalian polyribosomes. Nat. Protoc. 10.1038/nprot.2006.216 (2006).

Download references

Acknowledgements

We thank B. Vogelstein (Johns Hopkins University) for generously providing the DicerEx5/Ex5 RKO cell line, G. Hannon (Cold Spring Harbor Laboratory) for sharing the Dicer−/− and Dicer+/− ES cells, V. Racaniello (Columbia University) for the gift of HCV and CrPV IRES plasmids, C. Xue for statistical analysis, Y. Yu for advice on polysome gradients and J. Zhu for helpful discussions and communicating unpublished results. This work was supported by US National Cancer Institute grant CA13106.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and A.R.K. designed the experiments and wrote the manuscript; S.S. performed the experiments and analyzed the data; Z.Z., R.S. and R.K. provided key reagents and advice.

Corresponding author

Correspondence to Adrian R Krainer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Zhang, Z., Sinha, R. et al. SF2/ASF autoregulation involves multiple layers of post-transcriptional and translational control. Nat Struct Mol Biol 17, 306–312 (2010). https://doi.org/10.1038/nsmb.1750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing