Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX

Abstract

Phosphorylation of histone H2AX is an early response to DNA damage in eukaryotes. In Saccharomyces cerevisiae, DNA damage or replication-fork stalling results in phosphorylation of histone H2A yielding γ-H2A (yeast γ-H2AX) in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Here, we describe the genome-wide location analysis of γ-H2A as a strategy to identify loci prone to engaging the Mec1 and Tel1 pathways. Notably, γ-H2A enrichment overlaps with loci prone to replication-fork stalling and is caused by the action of Mec1 and Tel1, indicating that these loci are prone to breakage. Moreover, about half the sites enriched for γ-H2A map to repressed protein-coding genes, and histone deacetylases are necessary for formation of γ-H2A at these loci. Finally, our work indicates that high-resolution mapping of γ-H2AX is a fruitful route to map fragile sites in eukaryotic genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide location analysis of γ-H2A.
Figure 2: Mutation of the TFIIIB-binding site of a tRNA gene abolishes DNA polymerase and γ-H2A enrichment.
Figure 3: Mapping of the γ-H2A enrichment in cells harboring different combinations of TEL1, MEC1 and SML1 deletions on natural replication-fork barriers.
Figure 4: Mutation of the H2A Ser129 residue increases the frequency of gross chromosomal rearrangements.
Figure 5: Many inactive genes have γ-H2A enrichment.
Figure 6: γ-H2A accumulation at many inactive genes depends on HDAC activities.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Labib, K. & Hodgson, B. Replication fork barriers: pausing for a break or stalling for time? EMBO Rep. 8, 346–353 (2007).

    Article  CAS  Google Scholar 

  2. Durkin, S.G. & Glover, T.W. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192 (2007).

    Article  CAS  Google Scholar 

  3. Ivessa, A.S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein–DNA complexes. Mol. Cell 12, 1525–1536 (2003).

    Article  CAS  Google Scholar 

  4. Ivessa, A.S., Zhou, J.Q., Schulz, V.P., Monson, E.K. & Zakian, V.A. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 16, 1383–1396 (2002).

    Article  CAS  Google Scholar 

  5. Deshpande, A.M. & Newlon, C.S. DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033 (1996).

    Article  CAS  Google Scholar 

  6. Greenfeder, S.A. & Newlon, C.S. Replication forks pause at yeast centromeres. Mol. Cell. Biol. 12, 4056–4066 (1992).

    Article  CAS  Google Scholar 

  7. Cha, R.S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).

    Article  CAS  Google Scholar 

  8. Raveendranathan, M. et al. Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO J. 25, 3627–3639 (2006).

    Article  CAS  Google Scholar 

  9. Rothstein, R. Deletions of a tyrosine tRNA gene in S. cerevisiae. Cell 17, 185–190 (1979).

    Article  CAS  Google Scholar 

  10. Admire, A. et al. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev. 20, 159–173 (2006).

    Article  CAS  Google Scholar 

  11. Roeder, G.S. & Fink, G.R. DNA rearrangements associated with a transposable element in yeast. Cell 21, 239–249 (1980).

    Article  CAS  Google Scholar 

  12. Lemoine, F.J., Degtyareva, N.P., Lobachev, K. & Petes, T.D. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120, 587–598 (2005).

    Article  CAS  Google Scholar 

  13. Cliby, W.A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 (1998).

    Article  CAS  Google Scholar 

  14. Brown, E.J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Weinert, T.A., Kiser, G.L. & Hartwell, L.H. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8, 652–665 (1994).

    Article  CAS  Google Scholar 

  16. Paulovich, A.G. & Hartwell, L.H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841–847 (1995).

    Article  CAS  Google Scholar 

  17. Sun, Z., Fay, D.S., Marini, F., Foiani, M. & Stern, D.F. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10, 395–406 (1996).

    Article  CAS  Google Scholar 

  18. Desany, B.A., Alcasabas, A.A., Bachant, J.B. & Elledge, S.J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956–2970 (1998).

    Article  CAS  Google Scholar 

  19. Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001).

    Article  CAS  Google Scholar 

  20. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  Google Scholar 

  21. Downs, J.A., Lowndes, N.F. & Jackson, S.P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000).

    Article  CAS  Google Scholar 

  22. Foster, E.R. & Downs, J.A. Histone H2A phosphorylation in DNA double-strand break repair. FEBS J. 272, 3231–3240 (2005).

    Article  CAS  Google Scholar 

  23. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. H2AX: the histone guardian of the genome. DNA Repair (Amst.) 3, 959–967 (2004).

    Article  CAS  Google Scholar 

  24. Cobb, J.A. et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055–3069 (2005).

    Article  CAS  Google Scholar 

  25. Ward, I.M. & Chen, J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276, 47759–47762 (2001).

    Article  CAS  Google Scholar 

  26. Redon, C. et al. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep. 4, 678–684 (2003).

    Article  CAS  Google Scholar 

  27. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  28. Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14, 1703–1711 (2004).

    Article  CAS  Google Scholar 

  29. Kim, J.A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J.E. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209–218 (2007).

    Article  CAS  Google Scholar 

  30. Wang, Y., Vujcic, M. & Kowalski, D. DNA replication forks pause at silent origins near the HML locus in budding yeast. Mol. Cell. Biol. 21, 4938–4948 (2001).

    Article  CAS  Google Scholar 

  31. Azvolinsky, A., Dunaway, S., Torres, J.Z., Bessler, J.B. & Zakian, V.A. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 20, 3104–3116 (2006).

    Article  CAS  Google Scholar 

  32. Torres, J.Z., Schnakenberg, S.L. & Zakian, V.A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra–S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24, 3198–3212 (2004).

    Article  CAS  Google Scholar 

  33. Rothstein, R., Helms, C. & Rosenberg, N. Concerted deletions and inversions are caused by mitotic recombination between δ sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 1198–1207 (1987).

    Article  CAS  Google Scholar 

  34. Melo, J.A., Cohen, J. & Toczyski, D.P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lisby, M., Rothstein, R. & Mortensen, U.H. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl. Acad. Sci. USA 98, 8276–8282 (2001).

    Article  CAS  Google Scholar 

  36. Kanellis, P. et al. A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions. PLoS Genet. 3, e134 (2007).

    Article  Google Scholar 

  37. Sollier, J. et al. The Saccharomyces cerevisiae Esc2 and Smc5–6 proteins promote sister chromatid junction–mediated intra-S repair. Mol. Biol. Cell 20, 1671–1682 (2009).

    Article  CAS  Google Scholar 

  38. Mankouri, H.W., Ngo, H.P. & Hickson, I.D. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 20, 1683–1694 (2009).

    Article  CAS  Google Scholar 

  39. Myung, K., Pennaneach, V., Kats, E.S. & Kolodner, R.D. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc. Natl. Acad. Sci. USA 100, 6640–6645 (2003).

    Article  CAS  Google Scholar 

  40. Hackett, J.A., Feldser, D.M. & Greider, C.W. Telomere dysfunction increases mutation rate and genomic instability. Cell 106, 275–286 (2001).

    Article  CAS  Google Scholar 

  41. Kraus, E., Leung, W.Y. & Haber, J.E. Break-induced replication: a review and an example in budding yeast. Proc. Natl. Acad. Sci. USA 98, 8255–8262 (2001).

    Article  CAS  Google Scholar 

  42. Tercero, J.A., Longhese, M.P. & Diffley, J.F. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336 (2003).

    Article  CAS  Google Scholar 

  43. Myung, K. & Kolodner, R.D. Induction of genome instability by DNA damage in Saccharomyces cerevisiae. DNA Repair (Amst.) 2, 243–258 (2003).

    Article  CAS  Google Scholar 

  44. Lee, K., Zhang, Y. & Lee, S.E. Saccharomyces cerevisiae ATM ortholog suppresses break-induced chromosome translocations. Nature 454, 543–546 (2008).

    Article  CAS  Google Scholar 

  45. Azvolinsky, A., Giresi, P.G., Lieb, J.D. & Zakian, V.A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722–734 (2009).

    Article  CAS  Google Scholar 

  46. Broach, J.R. Galactose regulation in Saccharomyces cerevisiae. The enzymes encoded by the GAL7, 10, 1 cluster are co-ordinately controlled and separately translated. J. Mol. Biol. 131, 41–53 (1979).

    Article  CAS  Google Scholar 

  47. MacIsaac, K.D. et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113 (2006).

    Article  Google Scholar 

  48. Xie, J. et al. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 18, 6448–6454 (1999).

    Article  CAS  Google Scholar 

  49. Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371 (1997).

    Article  CAS  Google Scholar 

  50. Robert, F. et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol. Cell 16, 199–209 (2004).

    Article  CAS  Google Scholar 

  51. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  52. Inai, T., Yukawa, M. & Tsuchiya, E. Interplay between chromatin and trans-acting factors on the IME2 promoter upon induction of the gene at the onset of meiosis. Mol. Cell. Biol. 27, 1254–1263 (2007).

    Article  CAS  Google Scholar 

  53. Veis, J., Klug, H., Koranda, M. & Ammerer, G. Activation of the G2/M-specific gene CLB2 requires multiple cell cycle signals. Mol. Cell. Biol. 27, 8364–8373 (2007).

    Article  CAS  Google Scholar 

  54. Aparicio, J.G., Viggiani, C.J., Gibson, D.G. & Aparicio, O.M. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4769–4780 (2004).

    Article  CAS  Google Scholar 

  55. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B.J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233 (2002).

    Article  CAS  Google Scholar 

  56. Guillemette, B. et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 3, e384 (2005).

    Article  Google Scholar 

  57. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

  58. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  Google Scholar 

  59. Rufiange, A., Jacques, P.E., Bhat, W., Robert, F. & Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405 (2007).

    Article  CAS  Google Scholar 

  60. Nieduszynski, C.A., Hiraga, S., Ak, P., Benham, C.J. & Donaldson, A.D. OriDB: a DNA replication origin database. Nucleic Acids Res. 35, D40–D46 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Durocher and Robert laboratories for their help and discussions, N. Sugimoto (Univ. of Medicine and Dentistry of New Jersey), R. Rothstein (Columbia Univ.), D. Lydall (Newcastle Univ.), K. Nasmyth (Univ. Oxford), A. Amon (Massachusetts Institute of Technology), W. Bonner (National Cancer Institute), A. Verreault (Univ. Montréal), K. Labib (Univ. of Manchester), J. Wyrick (Washington State Univ.) and R. Young (Whitehead Institute for Biomedical Research) for gifts of strains, A. Verrault also for the gift of histone H4 antibodies, G. Brown (Univ. of Toronto) for the gift of the Rad52-YFP expression plasmid and P. Pasero (Institute of Human Genetics, Centre Nationale de la Recherche Scientifique, France) for kindly communicating unpublished results. D.D. is the Thomas Kierans Chair in Mechanisms of Cancer Development and holds a Canada Research Chair (Tier II) in Proteomics, Bioinformatics and Functional Genomics. F.R. holds a New Investigator Award from the Canadian Institutes of Health Research. P.-É.J. holds a postdoctoral award from the Institut de recherches cliniques de Montréal training program in cancer research funded by the Canadian Institutes of Health Research. This work was funded by grants from the Canadian Cancer Society Research Institute to D.D. and from the Canadian Institutes of Health Research to F.R. (MOP82891).

Author information

Authors and Affiliations

Authors

Contributions

R.K.S. generated most yeast strains and performed most ChIP-chip experiments as well as the TEL06R qPCR (assisted by M.M.) and GCR (assisted by S.G.) experiments; P.-É.J. analyzed all ChIP-chip data; L.L. performed the mutant tRNA qPCR experiment; additional ChIP-chip experiments were performed by B.C. (wild-type and h2a-S129A γ-H2A), A.R.B. (MCMs) and M.B. (RNAPII); M.Y. performed focus formation assays; D.D. and F.R., with help from P.-É.J. and R.K.S., conceived the experiments and wrote the manuscript.

Corresponding authors

Correspondence to François Robert or Daniel Durocher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–7 and Supplementary Methods (PDF 7723 kb)

Supplementary File 1

The combined datasets of all the ChIP-chip data used in this study (Supplementary Table 1, along with the γ-H2A sites identified with the two sets of parameters analyzed (Supplementary Table 2). The file, compressed with gzip, is in the BED format compatible with the UCSC Genome Browser (http://genome.ucsc.edu/). (TXT 24746 kb)

Supplementary File 2

The mean log2 calculated on the promoter (defined as half of the upstream intergenic regions and up to 250 bp6) and on the complete length of each annotation of SGD (version Feb. 02 2008) for each ChIP-chip dataset produced in this study. (TXT 4396 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szilard, R., Jacques, PÉ., Laramée, L. et al. Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX. Nat Struct Mol Biol 17, 299–305 (2010). https://doi.org/10.1038/nsmb.1754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing