Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mediator Head module structure and functional interactions

Abstract

We used single-particle electron microscopy to characterize the structure and subunit organization of the Mediator Head module that controls Mediator–RNA polymerase II (RNAPII) and Mediator-promoter interactions. The Head module adopts several conformations differing in the position of a movable jaw formed by the Med18–Med20 subcomplex. We also characterized, by structural, biochemical and genetic means, the interactions of the Head module with TATA-binding protein (TBP) and RNAPII subunits Rpb4 and Rpb7. TBP binds near the Med18–Med20 attachment point and stabilizes an open conformation of the Head module. Rpb4 and Rpb7 bind between the Head jaws, establishing contacts essential for yeast-cell viability. These results, and consideration of the structure of the Mediator–RNAPII holoenzyme, shed light on the stabilization of the pre-initiation complex by Mediator and suggest how Mediator might influence initiation by modulating polymerase conformation and interaction with promoter DNA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mediator and Head module structure.
Figure 2: EM analysis of Head module and subcomplexes.
Figure 3: Head–TBP interactions.
Figure 4: Head module–Rpb4–Rpb7 interaction.
Figure 5: Interaction of the Head module with components of the mPIC and a possible mechanism for initiation regulation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Flanagan, P.M. et al. Resolution of factors required for the initiation of transcription by yeast RNA polymerase II. J. Biol. Chem. 265, 11105–11107 (1990).

    CAS  PubMed  Google Scholar 

  2. Flanagan, P.M., Kelleher, R.J. III., Sayre, M.H., Tschochner, H. & Kornberg, R.D. A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350, 436–438 (1991).

    Article  CAS  Google Scholar 

  3. Baek, H.J., Malik, S., Qin, J. & Roeder, R.G. Requirement of TRAP/mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAF(II)s. Mol. Cell. Biol. 22, 2842–2852 (2002).

    Article  CAS  Google Scholar 

  4. Naar, A.M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).

    Article  CAS  Google Scholar 

  5. Takagi, Y. & Kornberg, R.D. Mediator as a general transcription factor. J. Biol. Chem. 281, 80–89 (2006).

    Article  CAS  Google Scholar 

  6. Asturias, F.J., Jiang, Y.W., Myers, L.C., Gustafsson, C.M. & Kornberg, R.D. Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283, 985–987 (1999).

    Article  CAS  Google Scholar 

  7. Sato, S. et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14, 685–691 (2004).

    Article  CAS  Google Scholar 

  8. Cai, G., Imasaki, T., Takagi, Y. & Asturias, F.J. Mediator structural conservation and implications for the regulation mechanism. Structure 17, 559–567 (2009).

    Article  CAS  Google Scholar 

  9. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  10. Thompson, C.M. & Young, R.A. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92, 4587–4590 (1995).

    Article  CAS  Google Scholar 

  11. Takagi, Y. et al. Head module control of mediator interactions. Mol. Cell 23, 355–364 (2006).

    Article  CAS  Google Scholar 

  12. Fitzgerald, D.J. et al. Protein complex expression by using multigene baculoviral vectors. Nat. Methods 3, 1021–1032 (2006).

    Article  CAS  Google Scholar 

  13. Radermacher, M. The three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron Microsc. Tech. 9, 359–394 (1988).

    Article  CAS  Google Scholar 

  14. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies 410 (Oxford University Press, San Diego, California, USA, 2006).

  15. Lariviere, L. et al. Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20. Nat. Struct. Mol. Biol. 13, 895–901 (2006).

    Article  CAS  Google Scholar 

  16. Koh, S.S., Ansari, A.Z., Ptashne, M. & Young, R.A. An activator target in the RNA polymerase II holoenzyme. Mol. Cell 1, 895–904 (1998).

    Article  CAS  Google Scholar 

  17. Toth-Petroczy, A. et al. Malleable machines in transcription regulation: the mediator complex. PLOS Comput. Biol. 4, e1000243 (2008).

    Article  Google Scholar 

  18. Baumli, S., Hoeppner, S. & Cramer, P. A conserved mediator hinge revealed in the structure of the MED7.MED21 (Med7.Srb7) heterodimer. J. Biol. Chem. 280, 18171–18178 (2005).

    Article  CAS  Google Scholar 

  19. Koschubs, T. et al. Identification, structure, and functional requirement of the Mediator submodule Med7N/31. EMBO J. 28, 69–80 (2009).

    Article  CAS  Google Scholar 

  20. Taatjes, D.J., Schneider-Poetsch, T. & Tjian, R. Distinct conformational states of nuclear receptor-bound CRSP-Med complexes. Nat. Struct. Mol. Biol. 11, 664–671 (2004).

    Article  CAS  Google Scholar 

  21. Bushnell, D.A. & Kornberg, R.D. Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA 100, 6969–6973 (2003).

    Article  CAS  Google Scholar 

  22. Armache, K.J., Kettenberger, H. & Cramer, P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6964–6968 (2003).

    Article  CAS  Google Scholar 

  23. Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002).

    Article  CAS  Google Scholar 

  24. Bushnell, D.A., Westover, K.D., Davis, R.E. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303, 983–988 (2004).

    Article  CAS  Google Scholar 

  25. Chung, W.H. et al. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Mol. Cell 12, 1003–1013 (2003).

    Article  CAS  Google Scholar 

  26. Chen, H.T. & Hahn, S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119, 169–180 (2004).

    Article  CAS  Google Scholar 

  27. Todone, F., Brick, P., Werner, F., Weinzierl, R.O. & Onesti, S. Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Mol. Cell 8, 1137–1143 (2001).

    Article  CAS  Google Scholar 

  28. Sampath, V. & Sadhale, P. Rpb4 and Rpb7: a sub-complex integral to multi-subunit RNA polymerases performs a multitude of functions. IUBMB Life 57, 93–102 (2005).

    Article  CAS  Google Scholar 

  29. Edwards, A.M., Kane, C.M., Young, R.A. & Kornberg, R.D. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J. Biol. Chem. 266, 71–75 (1991).

    CAS  PubMed  Google Scholar 

  30. Orlicky, S.M., Tran, P.T., Sayre, M.H. & Edwards, A.M. Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem. 276, 10097–10102 (2001).

    Article  CAS  Google Scholar 

  31. Sampath, V., Balakrishnan, B., Verma-Gaur, J., Onesti, S. & Sadhale, P.P. Unstructured N terminus of the RNA polymerase II subunit Rpb4 contributes to the interaction of Rpb4.Rpb7 subcomplex with the core RNA polymerase II of Saccharomyces cerevisiae. J. Biol. Chem. 283, 3923–3931 (2008).

    Article  CAS  Google Scholar 

  32. Armache, K.J., Mitterweger, S., Meinhart, A. & Cramer, P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem. 280, 7131–7134 (2005).

    Article  CAS  Google Scholar 

  33. Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    Article  CAS  Google Scholar 

  34. Li, M.Z. & Elledge, S.J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007).

    Article  CAS  Google Scholar 

  35. Brignole, E.J., Smith, S. & Asturias, F.J. Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat. Struct. Mol. Biol. 16, 190–197 (2009).

    Article  CAS  Google Scholar 

  36. Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    Article  CAS  Google Scholar 

  37. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  38. Sorzano, C.O. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004).

    Article  CAS  Google Scholar 

  39. Pettersen, E.F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  40. Sakurai, H., Mitsuzawa, H., Kimura, M. & Ishihama, A. The Rpb4 subunit of fission yeast Schizosaccharomyces pombe RNA polymerase II is essential for cell viability and similar in structure to the corresponding subunits of higher eukaryotes. Mol. Cell. Biol. 19, 7511–7518 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Berger (European Molecular Biology Laboratory France) for providing reagents and help to establish the MultiBac expression system and C. Kaplan (Texas A&M Univ.), G. Hartzog (Univ. of California, Santa Cruz) and M. Goebl (Indiana Univ.) for providing yeast vectors and advising on the implementation of genetic experiments. This work was supported by US National Institutes of Health grant R01 GM67167 (F.J.A.) and US National Science Foundation grant MCB 0843026 (Y.T.), an American Heart Association Scientist Development Award 0735395N (Y.T.) and a Human Frontier Science Program long-term fellowship (T.I.).

Author information

Authors and Affiliations

Authors

Contributions

T.I., F.C. and Y.T. expressed, purified and biochemically characterized recombinant Head module and Head module subcomplexes and provided recombinant Rpb4 and Rpb7 and TBP; Y.T. and T.I. designed and carried out Head–Rpb4–Rpb7 and Head–TBP binding assays; K.Y. and Y.T. designed and carried out assays to test genetic interaction of Mediator subunits with Rpb4; Y.T. carried out in vitro transcription assays; G.C. carried out all EM data collection and analysis; G.C., Y.T. and F.J.A. discussed and interpreted all results; F.J.A. supervised EM structural analysis and wrote the manuscript in collaboration with G.C. and Y.T.

Corresponding authors

Correspondence to Yuichiro Takagi or Francisco J Asturias.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, G., Imasaki, T., Yamada, K. et al. Mediator Head module structure and functional interactions. Nat Struct Mol Biol 17, 273–279 (2010). https://doi.org/10.1038/nsmb.1757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing