Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4–ligase IV during chromosomal translocation formation

Abstract

Chromosomal translocations in hematologic and mesenchymal tumors form overwhelmingly by nonhomologous end-joining (NHEJ). Canonical NHEJ, essential for the repair of radiation-induced and some programmed double-strand breaks (DSBs), requires the Xrcc4–ligase IV complex. For other DSBs, the requirement for Xrcc4–ligase IV is less stringent, suggesting the existence of alternative end-joining (alt-NHEJ) pathways. To understand the contributions of the canonical NHEJ and alt-NHEJ pathways, we examined translocation formation in cells deficient in Xrcc4–ligase IV. We found that Xrcc4–ligase IV is not required for but rather suppresses translocations. Translocation breakpoint junctions have similar characteristics in wild-type cells and cells deficient in Xrcc4–ligase IV, including an unchanged bias toward microhomology, unlike what is observed for intrachromosomal DSB repair. Complex insertions in some junctions show that joining can be iterative, encompassing successive processing steps before joining. Our results imply that alt-NHEJ is the primary mediator of translocation formation in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosomal translocations are suppressed by Xrcc4–ligase IV.
Figure 2: Translocation breakpoint junctions have similar characteristics in wild-type, Xrcc4−/− mutant, Xrcc4-complemented Xrcc4−/− and Ku70−/− cells.
Figure 3: Insertions at breakpoint junctions show complex characteristics.

Similar content being viewed by others

References

  1. van Gent, D.C. & van der Burg, M. Non-homologous end-joining, a sticky affair. Oncogene 26, 7731–7740 (2007).

    Article  CAS  Google Scholar 

  2. Jeggo, P.A. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat. Res. 150, S80–S91 (1998).

    Article  CAS  Google Scholar 

  3. Lieber, M.R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol. 4, 712–720 (2003).

    Article  CAS  Google Scholar 

  4. Chaudhuri, J. et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv. Immunol. 94, 157–214 (2007).

    Article  CAS  Google Scholar 

  5. Greaves, M.F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nat. Rev. Cancer 3, 639–649 (2003).

    Article  CAS  Google Scholar 

  6. Weinstock, D.M., Elliott, B. & Jasin, M. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107, 777–780 (2006).

    Article  CAS  Google Scholar 

  7. Zhang, Y. & Rowley, J.D. Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst.) 5, 1282–1297 (2006).

    Article  CAS  Google Scholar 

  8. Lieber, M.R. The mechanism of human nonhomologous DNA end joining. J. Biol. Chem. 283, 1–5 (2008).

    Article  CAS  Google Scholar 

  9. Weterings, E. & Chen, D.J. The endless tale of non-homologous end-joining. Cell Res. 18, 114–124 (2008).

    Article  CAS  Google Scholar 

  10. Mahajan, K.N., Nick McElhinny, S.A., Mitchell, B.S. & Ramsden, D.A. Association of DNA polymerase μ (pol μ) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol. Cell. Biol. 22, 5194–5202 (2002).

    Article  CAS  Google Scholar 

  11. Koch, C.A. et al. Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV. EMBO J. 23, 3874–3885 (2004).

    Article  CAS  Google Scholar 

  12. Budman, J., Kim, S.A. & Chu, G. Processing of DNA for nonhomologous end-joining is controlled by kinase activity and Xrcc4–ligase IV. J. Biol. Chem. 282, 11950–11959 (2007).

    Article  CAS  Google Scholar 

  13. Ma, Y. et al. A biochemically defined system for mammalian nonhomologous DNA end joining. Mol. Cell 16, 701–713 (2004).

    Article  CAS  Google Scholar 

  14. Pierce, A.J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

    Article  CAS  Google Scholar 

  15. Weinstock, D.M. & Jasin, M. Alternative pathways for the repair of RAG-induced DNA breaks. Mol. Cell. Biol. 26, 131–139 (2006).

    Article  CAS  Google Scholar 

  16. Liang, F. & Jasin, M. Ku80 deficient cells exhibit excess degradation of extrachromosomal DNA. J. Biol. Chem. 271, 14405–14411 (1996).

    Article  CAS  Google Scholar 

  17. Delacote, F., Han, M., Stamato, T.D., Jasin, M. & Lopez, B.S. An xrcc4 defect or Wortmannin stimulates homologous recombination specifically induced by double-strand breaks in mammalian cells. Nucleic Acids Res. 30, 3454–3463 (2002).

    Article  CAS  Google Scholar 

  18. Guirouilh-Barbat, J. et al. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol. Cell 14, 611–623 (2004).

    Article  CAS  Google Scholar 

  19. Schulte-Uentrop, L., El-Awady, R.A., Schliecker, L., Willers, H. & Dahm-Daphi, J. Distinct roles of XRCC4 and Ku80 in non-homologous end-joining of endonuclease- and ionizing radiation-induced DNA double-strand breaks. Nucleic Acids Res. 36, 2561–2569 (2008).

    Article  CAS  Google Scholar 

  20. Yan, C.T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007).

    Article  CAS  Google Scholar 

  21. Difilippantonio, M.J. et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J. Exp. Med. 196, 469–480 (2002).

    Article  CAS  Google Scholar 

  22. Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002).

    Article  CAS  Google Scholar 

  23. Wang, J.H. et al. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature 460, 231–236 (2009).

    Article  CAS  Google Scholar 

  24. Weinstock, D.M., Brunet, E. & Jasin, M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nat. Cell Biol. 9, 978–981 (2007).

    Article  CAS  Google Scholar 

  25. Celli, G.B., Denchi, E.L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8, 885–890 (2006).

    Article  Google Scholar 

  26. Gao, Y. et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891–902 (1998).

    Article  CAS  Google Scholar 

  27. Guirouilh-Barbat, J., Rass, E., Plo, I., Bertrand, P. & Lopez, B.S. Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc. Natl. Acad. Sci. USA 104, 20902–20907 (2007).

    Article  CAS  Google Scholar 

  28. Sawada, M. et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat. Cell Biol. 5, 320–329 (2003).

    Article  CAS  Google Scholar 

  29. Downs, J.A. & Jackson, S.P. A means to a DNA end: the many roles of Ku. Nat. Rev. Mol. Cell Biol. 5, 367–378 (2004).

    Article  CAS  Google Scholar 

  30. Bryans, M., Valenzano, M.C. & Stamato, T.D. Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat. Res. 433, 53–58 (1999).

    Article  CAS  Google Scholar 

  31. Lee, K., Zhang, Y. & Lee, S.E. Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. Nature 454, 543–546 (2008).

    Article  CAS  Google Scholar 

  32. Kabotyanski, E.B., Gomelsky, L., Han, J.O., Stamato, T.D. & Roth, D.B. Double-strand break repair in Ku86- and XRCC4-deficient cells. Nucleic Acids Res. 26, 5333–5342 (1998).

    Article  CAS  Google Scholar 

  33. Verkaik, N.S. et al. Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells. Eur. J. Immunol. 32, 701–709 (2002).

    Article  CAS  Google Scholar 

  34. Nick McElhinny, S.A. et al. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. Mol. Cell 19, 357–366 (2005).

    Article  CAS  Google Scholar 

  35. Gu, J. et al. XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J. 26, 1010–1023 (2007).

    Article  CAS  Google Scholar 

  36. Shiroishi, T., Sagai, T., Hanzawa, N., Gotoh, H. & Moriwaki, K. Genetic control of sex-dependent meiotic recombination in the major histocompatibility complex of the mouse. EMBO J. 10, 681–686 (1991).

    Article  CAS  Google Scholar 

  37. Guillon, H. & de Massy, B. An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat. Genet. 32, 296–299 (2002).

    Article  CAS  Google Scholar 

  38. Daley, J.M. & Wilson, T.E. Rejoining of DNA double-strand breaks as a function of overhang length. Mol. Cell. Biol. 25, 896–906 (2005).

    Article  CAS  Google Scholar 

  39. Wang, H. et al. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res. 65, 4020–4030 (2005).

    Article  CAS  Google Scholar 

  40. Sallmyr, A., Tomkinson, A.E. & Rassool, F.V. Up-regulation of WRN and DNA ligase IIIα in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 112, 1413–1423 (2008).

    Article  CAS  Google Scholar 

  41. Stark, J.M., Pierce, A.J., Oh, J., Pastink, A. & Jasin, M. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol. Cell. Biol. 24, 9305–9316 (2004).

    Article  CAS  Google Scholar 

  42. Lee, S.E. et al. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).

    Article  CAS  Google Scholar 

  43. Smith, J. et al. Impact of DNA ligase IV on the fidelity of end joining in human cells. Nucleic Acids Res. 31, 2157–2167 (2003).

    Article  CAS  Google Scholar 

  44. Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 9, 675–682 (2007).

    Article  CAS  Google Scholar 

  45. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004).

    Article  CAS  Google Scholar 

  46. Jager, U. et al. Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95, 3520–3529 (2000).

    CAS  PubMed  Google Scholar 

  47. Ng, S.H., Maas, S.A., Petkov, P.M., Mills, K.D. & Paigen, K. Colocalization of somatic and meiotic double strand breaks near the Myc oncogene on mouse chromosome 15. Genes Chromosom. Cancer 48, 925–930 (2009).

    Article  CAS  Google Scholar 

  48. te Riele, H., Maandag, E.R., Clarke, A., Hooper, M. & Berns, A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651 (1990).

    Article  CAS  Google Scholar 

  49. te Riele, H., Maandag, E.R. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132 (1992).

    Article  CAS  Google Scholar 

  50. Richardson, C., Moynahan, M.E. & Jasin, M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12, 3831–3842 (1998).

    Article  CAS  Google Scholar 

  51. Roth, D.B., Porter, T.N. & Wilson, J.H. Mechanisms of nonhomologous recombination in mammalian cells. Mol. Cell. Biol. 5, 2599–2607 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Leversha and J. McGuire at the Memorial Sloan-Kettering Cancer Center Molecular Cytogenetics Core Facility for performing the FISH analysis, F. Alt and J. Chaudhuri for materials and E. Brunet, D. Weinstock, Y. Akamatsu and other members of Jasin laboratory for helpful discussions. This work was supported by US National Institutes of Health grant R01 NIHGM54668 and a Dorothy Rodbell Cohen Cancer Research Program Grant (M.J.).

Author information

Authors and Affiliations

Authors

Contributions

D.S. performed the experiments; D.S. and M.J. designed the research and wrote the paper.

Corresponding author

Correspondence to Maria Jasin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 4243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simsek, D., Jasin, M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4–ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17, 410–416 (2010). https://doi.org/10.1038/nsmb.1773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing