Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-translational modifications in signal integration

Abstract

Post-translational modifications of proteins and the domains that recognize these modifications have central roles in creating a highly dynamic relay system that reads and responds to alterations in the cellular microenvironment. Here we review the common principles of post-translational modifications and their importance in signal integration underlying epidermal growth factor receptor signaling and endocytosis, DNA-damage responses and immunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative PTMs, the enzymes that catalyze the reactions and PTM-specific binding domains.
Figure 2: PTM-orchestrated regulation of prototypical signaling initiated by ligand binding to transmembrane receptors.
Figure 3: Examples of intracellular signaling pathways regulated by PTMs.

Similar content being viewed by others

References

  1. Kho, Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mann, M. & Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    CAS  PubMed  Google Scholar 

  3. Fischer, E.H. & Krebs, E.G. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J. Biol. Chem. 216, 121–132 (1955).

    CAS  PubMed  Google Scholar 

  4. Walsh, D.A., Perkins, J.P. & Krebs, E.G. An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243, 3763–3765 (1968).

    CAS  PubMed  Google Scholar 

  5. Hershko, A. Some lessons from my work on the biochemistry of the ubiquitin system. J. Biol. Chem. 284, 10291–10295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt, E.E. & Davies, C.J. The origins of polypeptide domains. Bioessays 29, 262–270 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin, J. et al. Eukaryotic protein domains as functional units of cellular evolution. Sci. Signal. 2, ra76 (2009).

    PubMed  Google Scholar 

  8. Hunter, T. & Cooper, J.A. Protein-tyrosine kinases. Annu. Rev. Biochem. 54, 897–930 (1985).

    CAS  PubMed  Google Scholar 

  9. Manning, G., Plowman, G.D., Hunter, T. & Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520 (2002).

    CAS  PubMed  Google Scholar 

  10. Nurse, P. A long twentieth century of the cell cycle and beyond. Cell 100, 71–78 (2000).

    CAS  PubMed  Google Scholar 

  11. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).

    CAS  PubMed  Google Scholar 

  12. Narayanan, A. & Jacobson, M.P. Computational studies of protein regulation by post-translational phosphorylation. Curr. Opin. Struct. Biol. 19, 156–163 (2009).

    CAS  PubMed  Google Scholar 

  13. Johnson, L.N. & Lewis, R.J. Structural basis for control by phosphorylation. Chem. Rev. 101, 2209–2242 (2001).

    CAS  PubMed  Google Scholar 

  14. Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).

    CAS  PubMed  Google Scholar 

  15. Kuriyan, J. & Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).

    CAS  PubMed  Google Scholar 

  16. Filippakopoulos, P. et al. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134, 793–803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bae, J.H. et al. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Cell 138, 514–524 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  PubMed  Google Scholar 

  19. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 536–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    CAS  PubMed  Google Scholar 

  21. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132 (2009).

    CAS  PubMed  Google Scholar 

  22. Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains — from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirano, S. et al. Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat. Struct. Mol. Biol. 13, 272–277 (2006).

    CAS  PubMed  Google Scholar 

  24. Bienko, M. et al. Regulation of translesion synthesis DNA polymerase η by monoubiquitination. Mol. Cell 37, 396–407 (2010).

    CAS  PubMed  Google Scholar 

  25. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brzovic, P.S., Lissounov, A., Christensen, D.E., Hoyt, D.W. & Klevit, R.E.A. UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 (2006).

    CAS  PubMed  Google Scholar 

  27. Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8, 163–169 (2006).

    CAS  PubMed  Google Scholar 

  28. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  29. Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176–1179 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kovacs, J.J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005).

    CAS  PubMed  Google Scholar 

  31. Yang, X.J. Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26, 1076–1087 (2004).

    CAS  PubMed  Google Scholar 

  32. Ianari, A., Gallo, R., Palma, M., Alesse, E. & Gulino, A. Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J. Biol. Chem. 279, 30830–30835 (2004).

    CAS  PubMed  Google Scholar 

  33. Simonsson, M., Heldin, C.H., Ericsson, J. & Gronroos, E. The balance between acetylation and deacetylation controls Smad7 stability. J. Biol. Chem. 280, 21797–21803 (2005).

    CAS  PubMed  Google Scholar 

  34. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009).

    CAS  PubMed  Google Scholar 

  35. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    CAS  PubMed  Google Scholar 

  36. Wang, Q. et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327, 1004–1007 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  39. Kirmizis, A. et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449, 928–932 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, J. & Berger, S.L. The emerging field of dynamic lysine methylation of non-histone proteins. Curr. Opin. Genet. Dev. 18, 152–158 (2008).

    CAS  PubMed  Google Scholar 

  41. Nielsen, P.R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107 (2002).

    CAS  PubMed  Google Scholar 

  42. Chen, C. et al. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc. Natl. Acad. Sci. USA 106, 20336–20341 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cote, J. & Richard, S. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem. 280, 28476–28483 (2005).

    CAS  PubMed  Google Scholar 

  44. Kirino, Y. et al. Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16, 70–78 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaelin, W.G. Proline hydroxylation and gene expression. Annu. Rev. Biochem. 74, 115–128 (2005).

    CAS  PubMed  Google Scholar 

  46. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    CAS  PubMed  Google Scholar 

  47. Marshall, M.S. Ras target proteins in eukaryotic cells. FASEB J. 9, 1311–1318 (1995).

    CAS  PubMed  Google Scholar 

  48. Engelman, J.A., Luo, J. & Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).

    CAS  PubMed  Google Scholar 

  49. Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    CAS  PubMed  Google Scholar 

  50. Offterdinger, M., Georget, V., Girod, A. & Bastiaens, P.I. Imaging phosphorylation dynamics of the epidermal growth factor receptor. J. Biol. Chem. 279, 36972–36981 (2004).

    CAS  PubMed  Google Scholar 

  51. Yudushkin, I.A. et al. Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science 315, 115–119 (2007).

    CAS  PubMed  Google Scholar 

  52. Chen, P., Xie, H. & Wells, A. Mitogenic signaling from the EGF receptor is attenuated by a phospholipase C-γ/protein kinase C feedback mechanism. Mol. Biol. Cell 7, 871–881 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Damke, H., Gossen, M., Freundlieb, S., Bujard, H. & Schmid, S.L. Tightly regulated and inducible expression of dominant interfering dynamin mutant in stably transformed HeLa cells. Methods Enzymol. 257, 209–220 (1995).

    CAS  PubMed  Google Scholar 

  54. Burgess, A.W. et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 12, 541–552 (2003).

    CAS  PubMed  Google Scholar 

  55. Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem. 279, 16657–16661 (2004).

    CAS  PubMed  Google Scholar 

  56. Sorkin, A., Waters, C., Overholser, K.A. & Carpenter, G. Multiple autophosphorylation site mutations of the epidermal growth factor receptor. Analysis of kinase activity and endocytosis. J. Biol. Chem. 266, 8355–8362 (1991).

    CAS  PubMed  Google Scholar 

  57. Schmidt, M.H. & Dikic, I. The Cbl interactome and its functions. Nat. Rev. Mol. Cell Biol. 6, 907–918 (2005).

    CAS  PubMed  Google Scholar 

  58. Seaman, M.N. Endosome protein sorting: motifs and machinery. Cell. Mol. Life Sci. 65, 2842–2858 (2008).

    CAS  PubMed  Google Scholar 

  59. Piper, R.C. & Katzmann, D.J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 23, 519–547 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 5, 461–466 (2003).

    CAS  PubMed  Google Scholar 

  61. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. & Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 21, 737–748 (2006).

    CAS  PubMed  Google Scholar 

  62. Raiborg, C., Bache, K.G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat. Cell Biol. 4, 394–398 (2002).

    CAS  PubMed  Google Scholar 

  64. Raiborg, C., Malerod, L., Pedersen, N.M. & Stenmark, H. Differential functions of Hrs and ESCRT proteins in endocytic membrane trafficking. Exp. Cell Res. 314, 801–813 (2008).

    CAS  PubMed  Google Scholar 

  65. Shih, S.C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat. Cell Biol. 4, 389–393 (2002).

    CAS  PubMed  Google Scholar 

  66. Deribe, Y.L. et al. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal. 2, ra84 (2009).

    PubMed  Google Scholar 

  67. Bodmer, J.L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).

    CAS  PubMed  Google Scholar 

  68. Bianchi, K. & Meier, P. A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol. Cell 36, 736–742 (2009).

    CAS  PubMed  Google Scholar 

  69. Karin, M. & Gallagher, E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol. Rev. 228, 225–240 (2009).

    CAS  PubMed  Google Scholar 

  70. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    CAS  PubMed  Google Scholar 

  71. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    CAS  PubMed  Google Scholar 

  72. Ea, C.K., Deng, L., Xia, Z.P., Pineda, G. & Chen, Z.J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  PubMed  Google Scholar 

  73. Chen, Z.J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    CAS  PubMed  Google Scholar 

  75. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    CAS  PubMed  Google Scholar 

  76. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    CAS  PubMed  Google Scholar 

  77. Yamamoto, M. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat. Immunol. 7, 962–970 (2006).

    CAS  PubMed  Google Scholar 

  78. Xu, M., Skaug, B., Zeng, W. & Chen, Z.J. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFα and IL-1β. Mol. Cell 36, 302–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Haas, T.L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    CAS  PubMed  Google Scholar 

  80. Lee, J.H. & Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    CAS  PubMed  Google Scholar 

  81. Bakkenist, C.J. & Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    CAS  PubMed  Google Scholar 

  82. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  83. Ahn, J., Urist, M. & Prives, C. The Chk2 protein kinase. DNA Repair (Amst.) 3, 1039–1047 (2004).

    CAS  Google Scholar 

  84. Bassermann, F. & Pagano, M. Dissecting the role of ubiquitylation in the DNA damage response checkpoint in G2. Cell Death Differ. 17, 78–85 (2010).

    CAS  PubMed  Google Scholar 

  85. Busino, L. et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426, 87–91 (2003).

    CAS  PubMed  Google Scholar 

  86. Jin, J. et al. SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 17, 3062–3074 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu, J., McCall, C.M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1–CUL4A-ROC1 ligase in response to DNA damage. Nat. Cell Biol. 6, 1003–1009 (2004).

    CAS  PubMed  Google Scholar 

  88. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    CAS  PubMed  Google Scholar 

  89. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005).

    CAS  PubMed  Google Scholar 

  90. Guo, C. et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell. Biol. 26, 8892–8900 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hofmann, R.M. & Pickart, C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    CAS  PubMed  Google Scholar 

  92. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    CAS  PubMed  Google Scholar 

  93. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  94. Kamura, T. et al. Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Sci. USA 97, 10430–10435 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. MacKenzie, E.D. et al. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell. Biol. 27, 3282–3289 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Boulahbel, H., Duran, R.V. & Gottlieb, E. Prolyl hydroxylases as regulators of cell metabolism. Biochem. Soc. Trans. 37, 291–294 (2009).

    CAS  PubMed  Google Scholar 

  97. Hardy, W.R. et al. Combinatorial ShcA docking interactions support diversity in tissue morphogenesis. Science 317, 251–256 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Johnson, S.A., You, Z. & Hunter, T. Monitoring ATM kinase activity in living cells. DNA Repair (Amst.) 6, 1277–1284 (2007).

    CAS  Google Scholar 

  99. Violin, J.D., Zhang, J., Tsien, R.Y. & Newton, A.C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161, 899–909 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tony Pawson or Ivan Dikic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deribe, Y., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat Struct Mol Biol 17, 666–672 (2010). https://doi.org/10.1038/nsmb.1842

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing