Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers

Abstract

The small heat shock protein αB-crystallin (αB) contributes to cellular protection against stress. For decades, high-resolution structural studies on oligomeric αB have been confounded by its polydisperse nature. Here, we present a structural basis of oligomer assembly and activation of the chaperone using solid-state NMR and small-angle X-ray scattering (SAXS). The basic building block is a curved dimer, with an angle of 121° between the planes of the β-sandwich formed by α-crystallin domains. The highly conserved IXI motif covers a substrate binding site at pH 7.5. We observe a pH-dependent modulation of the interaction of the IXI motif with β4 and β8, consistent with a pH-dependent regulation of the chaperone function. N-terminal region residues Ser59-Trp60-Phe61 are involved in intermolecular interaction with β3. Intermolecular restraints from NMR and volumetric restraints from SAXS were combined to calculate a model of a 24-subunit αB oligomer with tetrahedral symmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the αB-crystallin core domain dimer and its intermolecular interactions.
Figure 2: Curvature of the α-crystallin domain dimer.
Figure 3: A substrate binding site of αB-crystallin.
Figure 4: Molecular organization of the oligomer.
Figure 5: pH-dependent modulation of a substrate binding site.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    Article  CAS  Google Scholar 

  2. Haslbeck, M., Franzmann, T., Weinfurtner, D. & Buchner, J. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12, 842–846 (2005).

    Article  CAS  Google Scholar 

  3. Ecroyd, H. & Carver, J.A. Crystallin proteins and amyloid fibrils. Cell. Mol. Life Sci. 66, 62–81 (2009).

    Article  CAS  Google Scholar 

  4. Horwitz, J. α-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449–10453 (1992).

    Article  CAS  Google Scholar 

  5. Lin, D.I. et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-αB crystallin) complex. Mol. Cell 24, 355–366 (2006).

    Article  CAS  Google Scholar 

  6. Goldstein, L.E. et al. Cytosolic β-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease. Lancet 361, 1258–1265 (2003).

    Article  CAS  Google Scholar 

  7. Kato, K. et al. Ser-59 is the major phosphorylation site in αB-crystallin accumulated in the brains of patients with Alexander's disease. J. Neurochem. 76, 730–736 (2001).

    Article  CAS  Google Scholar 

  8. Vicart, P. et al. A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet. 20, 92–95 (1998).

    Article  CAS  Google Scholar 

  9. Rajasekaran, N.S. et al. Human α B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130, 427–439 (2007).

    Article  CAS  Google Scholar 

  10. Liu, Y. et al. A novel αB-crystallin mutation associated with autosomal dominant congenital lamellar cataract. Invest. Ophthalmol. Vis. Sci. 47, 1069–1075 (2006).

    Article  Google Scholar 

  11. Selcen, D. & Engel, A.G. Myofibrillar myopathy caused by novel dominant negative α B-crystallin mutations. Ann. Neurol. 54, 804–810 (2003).

    Article  CAS  Google Scholar 

  12. Ousman, S.S. et al. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 448, 474–479 (2007).

    Article  CAS  Google Scholar 

  13. van Noort, J.M. et al. The small heat-shock protein α B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375, 798–801 (1995).

    Article  CAS  Google Scholar 

  14. Bennardini, F., Wrzosek, A. & Chiesi, M. α B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ. Res. 71, 288–294 (1992).

    Article  CAS  Google Scholar 

  15. Aquilina, J.A. et al. Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in αB-crystallin. Proc. Natl. Acad. Sci. USA 100, 10611–10616 (2003).

    Article  CAS  Google Scholar 

  16. Pasta, S.Y., Raman, B., Ramakrishna, T. & Rao Ch, M. The IXI/V motif in the C-terminal extension of α-crystallins: alternative interactions and oligomeric assemblies. Mol. Vis. 10, 655–662 (2004).

    CAS  PubMed  Google Scholar 

  17. Sreelakshmi, Y. & Sharma, K.K. Recognition sequence 2 (residues 60–71) plays a role in oligomerization and exchange dynamics of αB-crystallin. Biochemistry 44, 12245–12252 (2005).

    Article  CAS  Google Scholar 

  18. Kim, K.K., Kim, R. & Kim, S.H. Crystal structure of a small heat-shock protein. Nature 394, 595–599 (1998).

    Article  CAS  Google Scholar 

  19. van Montfort, R.L. et al. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8, 1025–1030 (2001).

    Article  CAS  Google Scholar 

  20. Stamler, R., Kappe, G., Boelens, W. & Slingsby, C. Wrapping the α-crystallin domain fold in a chaperone assembly. J. Mol. Biol. 353, 68–79 (2005).

    Article  CAS  Google Scholar 

  21. Bagneris, C. et al. Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J. Mol. Biol. 392, 1242–1252 (2009).

    Article  CAS  Google Scholar 

  22. Jehle, S. et al. αB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J. Mol. Biol. 385, 1481–1497 (2009).

    Article  CAS  Google Scholar 

  23. Koteiche, H.A. & McHaourab, H.S. Folding pattern of the α-crystallin domain in αA-crystallin determined by site-directed spin labeling. J. Mol. Biol. 294, 561–577 (1999).

    Article  CAS  Google Scholar 

  24. Haley, D.A., Horwitz, J. & Stewart, P.L. The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35 (1998).

    Article  CAS  Google Scholar 

  25. Peschek, J. et al. The eye lens chaperone α-crystallin forms defined globular assemblies. Proc. Natl. Acad. Sci. USA 106, 13272–13277 (2009).

    Article  CAS  Google Scholar 

  26. Higman, V.A. et al. Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J. Biomol. NMR 44, 245–260 (2009).

    Article  CAS  Google Scholar 

  27. Castellani, F. et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102 (2002).

    Article  CAS  Google Scholar 

  28. Bardiaux, B. et al. Influence of different assignment conditions on the determination of symmetric homodimeric structures with ARIA. Proteins 75, 569–585 (2009).

    Article  CAS  Google Scholar 

  29. Castellani, F. et al. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N–13C–13C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42, 11476–11483 (2003).

    Article  CAS  Google Scholar 

  30. Lange, A. et al. Analysis of proton-proton transfer dynamics in rotating solids and their use for 3D structure determination. J. Am. Chem. Soc. 125, 12640–12648 (2003).

    Article  CAS  Google Scholar 

  31. Gallivan, J.P. & Dougherty, D.A. Cation-pi interactions in structural biology. Proc. Natl. Acad. Sci. USA 96, 9459–9464 (1999).

    Article  CAS  Google Scholar 

  32. Bhattacharyya, J. et al. Mini-αB-crystallin: a functional element of αB-crystallin with chaperone-like activity. Biochemistry 45, 3069–3076 (2006).

    Article  CAS  Google Scholar 

  33. Augusteyn, R.C. α-crystallin: a review of its structure and function. Clin. Exp. Optom. 87, 356–366 (2004).

    Article  Google Scholar 

  34. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  35. Goddard, T.D., Huang, C.C. & Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    Article  CAS  Google Scholar 

  36. Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  Google Scholar 

  37. Kozin, M.B. et al. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

  38. Svergun, D.I., Petoukhov, M.V. & Koch, M.H. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).

    Article  CAS  Google Scholar 

  39. Carver, J.A., Aquilina, J.A., Truscott, R.J. & Ralston, G.B. Identification by 1H NMR spectroscopy of flexible C-terminal extensions in bovine lens α-crystallin. FEBS Lett. 311, 143–149 (1992).

    Article  CAS  Google Scholar 

  40. Kundu, B., Shukla, A., Chaba, R. & Guptasarma, P. The excised heat-shock domain of αB crystallin is a folded, proteolytically susceptible trimer with significant surface hydrophobicity and a tendency to self-aggregate upon heating. Protein Expr. Purif. 36, 263–271 (2004).

    Article  CAS  Google Scholar 

  41. Koteiche, H.A. & McHaourab, H.S. Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in αB-crystallin. J. Biol. Chem. 278, 10361–10367 (2003).

    Article  CAS  Google Scholar 

  42. Wriggers, W. & Chacón, P. Using Situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering. J. Appl. Crystallogr. 34, 773–776 (2001).

    Article  CAS  Google Scholar 

  43. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  Google Scholar 

  44. Lewandowski, J.R., De Paepe, G. & Griffin, R.G. Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129, 728–729 (2007).

    Article  CAS  Google Scholar 

  45. Jaroniec, C.P., Filip, C. & Griffin, R.G. 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. J. Am. Chem. Soc. 124, 10728–10742 (2002).

    Article  CAS  Google Scholar 

  46. Fossi, M. et al. SOLARIA: a protocol for automated cross-peak assignment and structure calculation for solid-state magic-angle spinning NMR spectroscopy. Angew. Chem. Int. Edn Engl. 44, 6151–6154 (2005).

    Article  CAS  Google Scholar 

  47. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  48. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  49. Linge, J.P. et al. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003).

    Article  CAS  Google Scholar 

  50. Laskowski, R.A. et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  51. Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  52. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  53. Putnam, C.D., Hammel, M., Hura, G.L. & Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007).

    Article  CAS  Google Scholar 

  54. Hura, G.L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–612 (2009).

    Article  CAS  Google Scholar 

  55. Petoukhov, M.V. & Svergun, D.I. Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr. Opin. Struct. Biol. 17, 562–571 (2007).

    Article  CAS  Google Scholar 

  56. Nilges, M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17, 297–309 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Rehbein and A. Diehl for sample preparation and discussions and D. Svergun for fruitful discussions concerning the SAXS experiments. This work was funded by US National Institutes of Health grant 1R01EY017370. SAXS data on αB10.1 was collected at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The Stanford Synchrotron Radiation Lightsource Structural Molecular Biology Program is supported by the US Department of Energy, Office of Biological and Environmental Research, and by the US National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. SAXS data collection for full-length αB was supported by European Community–European Molecular Biology Laboratory Hamburg Outstation; Deutsches Elektronen-Synchrotron Hamburg X33 beamline.

Author information

Authors and Affiliations

Authors

Contributions

S.J. contributed to all aspects of the manuscript; P.R. performed solution NMR experiments and helped to write the manuscript; B.B. performed structure calculations; S.M. did solid-state NMR and SAXS measurements as well as data analysis; R.K. contributed to modeling of C-terminal intermolecular interactions; J.R.S. prepared samples; V.A.H. contributed to assignment strategies, was involved in structure calculations and helped write the manuscript; R.E.K. contributed to the interpretation of results and wrote the manuscript; B.J.v.R. contributed to solid-state NMR measurements, discussed the results and helped to write the manuscript; H.O. designed experimental strategies, contributed to the interpretation of results and wrote the manuscript.

Corresponding authors

Correspondence to Rachel E Klevit, Barth-Jan van Rossum or Hartmut Oschkinat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jehle, S., Rajagopal, P., Bardiaux, B. et al. Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nat Struct Mol Biol 17, 1037–1042 (2010). https://doi.org/10.1038/nsmb.1891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing