Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3

Abstract

The toxin colicin E3 targets the 30S subunit of bacterial ribosomes and cleaves a phosphodiester bond in the decoding center. We present the crystal structure of the 70S ribosome in complex with the cytotoxic domain of colicin E3 (E3-rRNase). The structure reveals how the rRNase domain of colicin binds to the A site of the decoding center in the 70S ribosome and cleaves the 16S ribosomal RNA (rRNA) between A1493 and G1494. The cleavage mechanism involves the concerted action of conserved residues Glu62 and His58 of the cytotoxic domain of colicin E3. These residues activate the 16S rRNA for 2′ OH–induced hydrolysis. Conformational changes observed for E3-rRNase, 16S rRNA and helix 69 of 23S rRNA suggest that a dynamic binding platform is required for colicin E3 binding and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of E3-rRNase bound to the 70S ribosome.
Figure 2: A mechanism for 16S rRNA cleavage by E3-rRNase.
Figure 3: The N terminus of E3-rRNase contacts ribosomal protein S12.
Figure 4: Conformational changes at helix 69 of 23S rRNA induced by E3-rRNase binding and cleavage.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Brodersen, D.E. et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143–1154 (2000).

    Article  CAS  Google Scholar 

  2. Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  Google Scholar 

  3. Hansen, J.L. et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117–128 (2002).

    Article  CAS  Google Scholar 

  4. Auerbach, T. et al. Antibiotics targeting ribosomes: crystallographic studies. Curr. Drug Targets Infect. Disord. 2, 169–186 (2002).

    Article  CAS  Google Scholar 

  5. Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    Article  CAS  Google Scholar 

  6. James, R., Penfold, C.N., Moore, G.R. & Kleanthous, C. Killing of E. coli cells by E group nuclease colicins. Biochimie 84, 381–389 (2002).

    Article  CAS  Google Scholar 

  7. Bouveret, E., Rigal, A., Lazdunski, C. & Benedetti, H. Distinct regions of the colicin A translocation domain are involved in the interaction with TolA and TolB proteins upon import into Escherichia coli. Mol. Microbiol. 27, 143–157 (1998).

    Article  CAS  Google Scholar 

  8. Jakes, K.S. & Zinder, N.D. Highly purified colicin E3 contains immunity protein. Proc. Natl. Acad. Sci. USA 71, 3380–3384 (1974).

    Article  CAS  Google Scholar 

  9. Kleanthous, C. & Walker, D. Immunity proteins: enzyme inhibitors that avoid the active site. Trends Biochem. Sci. 26, 624–631 (2001).

    Article  CAS  Google Scholar 

  10. Walker, D., Moore, G.R., James, R. & Kleanthous, C. Thermodynamic consequences of bipartite immunity protein binding to the ribosomal ribonuclease colicin E3. Biochemistry 42, 4161–4171 (2003).

    Article  CAS  Google Scholar 

  11. Duché, D., Frenkian, A., Prima, V. & Lloubes, R. Release of immunity protein requires functional endonuclease colicin import machinery. J. Bacteriol. 188, 8593–8600 (2006).

    Article  Google Scholar 

  12. Bowman, C.M., Dahlberg, J.E., Ikemura, T., Konisky, J. & Nomura, M. Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. Proc. Natl. Acad. Sci. USA 68, 964–968 (1971).

    Article  CAS  Google Scholar 

  13. Senior, B.W. & Holland, I.B. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc. Natl. Acad. Sci. USA 68, 959–963 (1971).

    Article  CAS  Google Scholar 

  14. Soelaiman, S., Jakes, K., Wu, N., Li, C. & Shoham, M. Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol. Cell 8, 1053–1062 (2001).

    Article  CAS  Google Scholar 

  15. Carr, S., Walker, D., James, R., Kleanthous, C. & Hemmings, A.M. Inhibition of a ribosome-inactivating ribonuclease: the crystal structure of the cytotoxic domain of colicin E3 in complex with its immunity protein. Structure 8, 949–960 (2000).

    Article  CAS  Google Scholar 

  16. Zarivach, R. et al. On the interaction of colicin E3 with the ribosome. Biochimie 84, 447–454 (2002).

    Article  CAS  Google Scholar 

  17. Walker, D., Lancaster, L., James, R. & Kleanthous, C. Identification of the catalytic motif of the microbial ribosome inactivating cytotoxin colicin E3. Protein Sci. 13, 1603–1611 (2004).

    Article  CAS  Google Scholar 

  18. Lancaster, L.E., Savelsbergh, A., Kleanthous, C., Wintermeyer, W. & Rodnina, M.V. Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes. Mol. Microbiol. 69, 390–401 (2008).

    Article  CAS  Google Scholar 

  19. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  20. Voorhees, R.M., Weixlbaumer, A., Loakes, D., Kelley, A.C. & Ramakrishnan, V. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16, 528–533 (2009).

    Article  CAS  Google Scholar 

  21. Kaufmann, Y. & Zamir, A. Protection of E. coli ribosomes against colicin E3-induced inactivation by bound aminoacyl-tRNA. FEBS Lett. 36, 277–280 (1973).

    Article  CAS  Google Scholar 

  22. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  23. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  24. Neubauer, C. et al. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139, 1084–1095 (2009).

    Article  CAS  Google Scholar 

  25. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008).

    Article  CAS  Google Scholar 

  26. Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. USA 105, 19684–19689 (2008).

    Article  CAS  Google Scholar 

  27. Sharma, D., Cukras, A.R., Rogers, E.J., Southworth, D.R. & Green, R. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J. Mol. Biol. 374, 1065–1076 (2007).

    Article  CAS  Google Scholar 

  28. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  Google Scholar 

  29. Takyar, S., Hickerson, R.P. & Noller, H.F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).

    Article  CAS  Google Scholar 

  30. Yang, X., Gerczei, T., Glover, L.T. & Correll, C.C. Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping. Nat. Struct. Biol. 8, 968–973 (2001).

    Article  CAS  Google Scholar 

  31. Rupert, P.B. & Ferre-D'Amare, A.R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001).

    Article  CAS  Google Scholar 

  32. Boon, T. Inactivation of ribosomes in vitro by colicin E 3. Proc. Natl. Acad. Sci. USA 68, 2421–2425 (1971).

    Article  CAS  Google Scholar 

  33. Bowman, C.M., Sidikaro, J. & Nomura, M. Specific inactivation of ribosomes by colicin E3 in vitro and mechanism of immunity in colicinogenic cells. Nat. New Biol. 234, 133–137 (1971).

    Article  CAS  Google Scholar 

  34. Boon, T. Inactivation of ribosomes in vitro by colicin E 3 and its mechanism of action. Proc. Natl. Acad. Sci. USA 69, 549–552 (1972).

    Article  CAS  Google Scholar 

  35. Bowman, C.M. Inactivation of ribosomes by colicin E3 in vitro: Requirement for 50 S ribosomal subunits. FEBS Lett. 22, 73–75 (1972).

    Article  CAS  Google Scholar 

  36. Ohno-Iwashita, Y. & Imahori, K. Colicin E3 induced cleavage of 16s rRNA of isolated 30S ribosomal subunits. J. Biochem. 82, 919–922 (1977).

    Article  CAS  Google Scholar 

  37. Twilt, J.C., Overbeek, G.P. & van Duin, J. Translational fidelity and specificity of ribosomes cleaved by cloacin DF13. Eur. J. Biochem. 94, 477–484 (1979).

    Article  CAS  Google Scholar 

  38. Sander, G. Colicin E3 treatment renders ribosomes more resistant to streptomycin and reduces miscoding. FEBS Lett. 97, 217–220 (1979).

    Article  CAS  Google Scholar 

  39. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  40. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  41. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  42. Ogle, J.M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Neubauer, I.S. Fernandez, Y. Gao, M. Schmeing, J. Li and M. Ortiz-Lombardia for helpful discussions and N. Kirkpatrick for technical assistance. V.R. was supported by the Medical Research Council (UK), the Wellcome Trust, the Louis-Jeantet Foundation and the Agouron Institute. C.K. acknowledges the Biotechnology and Biological Sciences Research Councils (UK) for funding.

Author information

Authors and Affiliations

Authors

Contributions

C.L.N. and K.L. carried out the crystallographic and biochemical experiments, analyzed data and interpreted results; N.A.G.M. and A.S. expressed and purified the E3-rRNase mutants; A.C.K. prepared 70S ribosomes; C.K. and V.R. supervised the research; K.L., C.L.N., C.K. and V.R. wrote the paper.

Corresponding authors

Correspondence to Colin Kleanthous or V Ramakrishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 5991 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, C., Lang, K., Meenan, N. et al. Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3. Nat Struct Mol Biol 17, 1241–1246 (2010). https://doi.org/10.1038/nsmb.1896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing