Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms

Abstract

Repressor activator protein 1 (RAP1) is the most highly conserved telomere protein. It is involved in protecting chromosome ends in fission yeast and promoting gene silencing in Saccharomyces cerevisiae, whereas it represses homology-directed recombination at telomeres in mammals. To understand how RAP1 has such diverse functions at telomeres, we solved the crystal or solution structures of the RAP1 C-terminal (RCT) domains of RAP1 from multiple organisms in complex with their respective protein-binding partners. Our analysis establishes RAP1RCT as an evolutionarily conserved protein-protein interaction module. In mammalian and fission yeast cells, this module interacts with TRF2 and Taz1, respectively, targeting RAP1 to chromosome ends for telomere protection. In contrast, S. cerevisiae RAP1 uses its RCT domain to recruit Sir3 to telomeres to mediate gene silencing. Together, our results show that, depending on the organism, the evolutionarily conserved RAP1 RCT motif has diverse functional roles at telomeres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the human TRF2RBM–RAP1RCT complex.
Figure 2: Crystallographic and mutational analyses of TRF2RBM–RAP1RCT interaction.
Figure 3: RAP1 is required for telomere end protection.
Figure 4: Structure of fission yeast Taz1RBMSpRap1RCT complex.
Figure 5: Mutational analyses of Taz1-SpRap1 interaction.
Figure 6: Structure of budding yeast Sir3RBMScRap1RCT complex and its role in telomeric silencing.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Linger, B.R. & Price, C.M. Conservation of telomere protein complexes: shuffling through evolution. Crit. Rev. Biochem. Mol. Biol. 44, 434–446 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Celli, G.B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Denchi, E.L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Guo, X. et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bae, N.S. & Baumann, P.A. RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol. Cell 26, 323–334 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Sarthy, J., Bae, N.S., Scrafford, J. & Baumann, P. Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J. 28, 3390–3399 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinez, P. et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat. Cell Biol. 12, 768–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sfeir, A., Kabir, S., van Overbeek, M., Celli, G.B. & de Lange, T. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327, 1657–1661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huet, J. et al. A general upstream binding factor for genes of the yeast translational apparatus. EMBO J. 4, 3539–3547 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shore, D. RAP1: a protean regulator in yeast. Trends Genet. 10, 408–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Konig, P., Giraldo, R., Chapman, L. & Rhodes, D. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85, 125–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Moretti, P. & Shore, D. Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol. Cell. Biol. 21, 8082–8094 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moretti, P., Freeman, K., Coodly, L. & Shore, D. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8, 2257–2269 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Feeser, E.A. & Wolberger, C. Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants. J. Mol. Biol. 380, 520–531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chikashige, Y. & Hiraoka, Y. Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Curr. Biol. 11, 1618–1623 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kanoh, J. & Ishikawa, F. spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr. Biol. 11, 1624–1630 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Miller, K.M., Ferreira, M.G. & Cooper, J.P. Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. EMBO J. 24, 3128–3135 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, Y. et al. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319, 1092–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Deng, Y., Guo, X., Ferguson, D.O. & Chang, S. Multiple roles for MRE11 at uncapped telomeres. Nature 460, 914–918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, R.C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y., Ghosh, G. & Hendrickson, E.A. Ku86 represses lethal telomere deletion events in human somatic cells. Proc. Natl. Acad. Sci. USA 106, 12430–12435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bailey, S.M., Goodwin, E.H., Meyne, J. & Cornforth, M.N. CO-FISH reveals inversions associated with isochromosome formation. Mutagenesis 11, 139–144 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Miyoshi, T., Kanoh, J., Saito, M. & Ishikawa, F. Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320, 1341–1344 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Gottschling, D.E., Aparicio, O.M., Billington, B.L. & Zakian, V.A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Boeke, J.D., LaCroute, F. & Fink, G.R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345–346 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Sussel, L. & Shore, D. Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc. Natl. Acad. Sci. USA 88, 7749–7753 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rai, R. et al. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J. 29, 2598–2610 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. d'Adda di Fagagna, F. et al. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol. 11, 1192–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, H. et al. TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nat. Struct. Mol. Biol. 16, 372–379 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Court, R., Chapman, L., Fairall, L. & Rhodes, D. How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep. 6, 39–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Horvath, M.P., Schweiker, V.L., Bevilacqua, J.M., Ruggles, J.A. & Schultz, S.C. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Lei, M., Podell, E.R., Baumann, P. & Cech, T.R. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426, 198–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Lei, M., Podell, E.R. & Cech, T.R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 11, 1223–1229 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. La Fortelle, E.d. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  PubMed  Google Scholar 

  44. Lamzin, V.S., Perrakis, A. & Wilson, K.S. The ARP/WARP suite for automated construction and refinement of protein models. in Int. Tables for Crystallography. Vol. F: Crystallography of Biological Macromolecules (Rossmann, M.G. & Arnold, E., eds.) 720–722 (Kluwer, Dordrecht, The Netherlands, 2001).

  45. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  46. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaaed, M. Improved methods for building protein models in electron density maps and the location of errors in these methods. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  47. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Rieping, W. et al. ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Duggan, B.M., Legge, G.B., Dyson, H.J. & Wright, P.E. SANE (Structure Assisted NOE Evaluation): an automated model-based approach for NOE assignment. J. Biomol. NMR 19, 321–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Güntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  PubMed  Google Scholar 

  52. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Else, T. et al. Genetic p53 deficiency partially rescues the adrenocortical dysplasia phenotype at the expense of increased tumorigenesis. Cancer Cell 15, 465–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  PubMed  Google Scholar 

  57. Hentges, P., Van Driessche, B., Tafforeau, L., Vandenhaute, J. & Carr, A.M. Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22, 1013–1019 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Chikashige, Y. et al. Membrane proteins Bqt3 and -4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation. J. Cell Biol. 187, 413–427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas, B.J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Karlseder (Salk Institute for Biological Studies), L. Rudolph (University of Ulm) and M. Tarsounas (Cancer Research UK and University of Oxford) for providing valuable reagents. We thank F. Ishikawa (Kyoto University) for strains and Y. Ogiyama and K. Ishii (Osaka University) for technical support on PFGE. M.L. acknowledges financial support from the US National Institutes of Health (RO1 GM083015), the American Cancer Society and the Sidney Kimmel Foundation. M.L. is a Howard Hughes Medical Institute Early Career Scientist. S.C. acknowledges financial support from the US National Institute on Aging (RO1 AG028888), the US National Cancer Institute (RO1 CA129037), the Welch Foundation, the Susan G. Komen Race for the Cure Foundation, the Abraham and Phyllis Katz Foundation and the Michael Kadoorie Cancer Genetic Research Program. J.K. was supported by grants from Osaka University Life Science Young Independent Researcher Support Program (Japan Science and Technology Agency), the Japanese Ministry of Education, Culture, Sports, Science and Technology, Inamori Foundation, Astellas Foundation for Research on Metabolic Disorders and Takeda Science Foundation. Work in the laboratory of D.S. was supported by a grant from the Swiss National Fund (grant 31003A116716), by the Swiss National Fund Frontiers in Genetics NCCR program and by the Canton of Geneva. Use of Life Sciences Collaborative Access Team Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (grant 085P1000817). Use of the Advanced Photon Source (APS) was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Contributions

M.L., S.C., H.H., J.K. and D.S. designed the experiments. Y.C., R.R., Z.Z., C.R., Y.Y., H.Z., P.D., F.W. and H.T. conducted the experiments. M.L., S.C., H.H., J.K., D.S. and Y.H. analyzed the data. M.L. wrote the paper.

Corresponding authors

Correspondence to Sandy Chang or Ming Lei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 767 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Rai, R., Zhou, ZR. et al. A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nat Struct Mol Biol 18, 213–221 (2011). https://doi.org/10.1038/nsmb.1974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing